(Ⅰ)利用祖暅原理推导半径为 的球的体积公式时,可以构造如图②所示的几何体 ,几何体 的底面半径和高都为 ,其底面和半球体的底面同在平面 内.设与平面 平行且距离为 的平面 截两个几何体得到两个截面,请在图②中用阴影画出与图①中阴影截面面积相等的图形并给出证明;
(Ⅱ)现将椭圆 所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球 , (如图),类比(Ⅰ)中的方法,探究椭球 的体积公式,并写出椭球 , 的体积之比.
(Ⅰ)求4局比赛决出胜负的概率;
(Ⅱ)设在24分钟内,甲、乙比赛了3局,比赛结束时,甲乙总共进行的局数记为 ,求 的分布列及数学期望.
(Ⅰ)求双曲线的方程;
(Ⅱ)设过双曲线上动点 的直线 分别交双曲线的两条渐近线于 , 两点,求 的外心 的轨迹方程.