(Ⅰ)求 , 的值,并求这100颗芯片评测分数的中位数(结果保留小数点后两位);
(Ⅱ)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片先后分别装在3个工程手机中进行初测,若3个工程手机的评分都不少于11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都不少于11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分.手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.
(Ⅰ)求椭圆 的方程;
(Ⅱ)是否存在直线与椭圆 交于 、 两点,交 轴于点 ,使 成立?若存在,求出实数 的取值范围;若不存在,请说明理由.