当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省内江市2021-2022学年八年级上学期数学开学试卷

更新时间:2021-10-08 浏览次数:159 类型:开学考试
一、填空题:请将正确答案的序号填入题后括号里。(每小题2分,共24分)
二、填空题(每小题2分,共8分)
三、解答题(共38分)
    1. (1) 已知xyz满足 |xy|+z2z 0,求2xy+z的算术平方根.
    2. (2) 已知实数abc满足:b 4,c的平方根等于它本身.求a 的值.
    1. (1) (﹣3a32a3+(﹣4a2a7﹣(5a33
    2. (2) 先化简,再求值:(2+a)(2﹣a)+aa﹣5b)+3a5b3÷(﹣a2b2 , 其中ab
    1. (1) 已知m+4n﹣3=0,求2m•16n的值;
    2. (2) 已知n为正整数,且x2n=4,求(x3n2﹣2(x22n的值.
    1. (1) 试说明代数式(s﹣2t)(s+2t+1)+4tt )的值与st的值取值有无关系;
    2. (2) 已知多项式axb与2x2x+2的乘积展开式中不含x的一次项,且常数项为﹣4,试求ab的值;
    3. (3) 已知二次三项式2x2+3xk有一个因式是(2x﹣5),求另一个因式以及k的值.
  • 21. (2021八上·内江开学考) 配方法是数学中非常重要的一种思想方法,它是指将一个式子或将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.这种方法常被用到代数式的变形中,并结合非负数的意义来解决问题.

    定义:若一个整数能表示成a2+b2ab为整数)的形式,则称这个数为“完美数”.

    例如,5是“完美数”,理由:因为5=12+22 , 所以5是“完美数”.

    解决问题:

    1. (1) 已知29是“完美数”,请将它写成a2+b2ab为整数)的形式:
    2. (2) 若x2﹣4x+5可配方成(xm2+nmn为常数),则mn
    3. (3) 探究问题:已知x2+y2﹣2x+4y+5=0,则x+y的值为
    4. (4) 已知Sx2+4y2+4x﹣12y+kxy是整数,k是常数),要使S为“完美数”,试求出k的值.

微信扫码预览、分享更方便

试卷信息