当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省济宁市任城区2021-2022学年九年级上学期数学期中...

更新时间:2022-01-20 浏览次数:97 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 17. (2021九上·任城期中) 某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度 与时间 之间的函数关系,其中线段 表示恒温系统开启阶段,双曲线的一部分 表示恒温系统关闭阶段.

    请根据图中信息解答下列问题:

    1. (1) 求 )的函数表达式;
    2. (2) 若大棚内的温度低于 时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多长时间,才能使蔬菜避免受到伤害?

  • 18. (2021九上·龙凤期末) 河上有一座桥孔为抛物线形的拱桥,水面宽6m时,水面离桥孔顶部3m.因降暴雨水位上升lm.

    1. (1) 如图①,若以桥孔的最高点为原点,建立平面直角坐标系,求抛物线的解析式;
    2. (2) 一艘装满物资的小船,露出水面的高为0.5m、宽为4m(横断面如图②).暴雨后这艘船能从这座拱桥下通过吗?请说明理由.
  • 19. (2021九上·任城期中) 测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°.若已知旗杆的高度AB=5米,求建筑物BC的高度.(参考数据:sin50°≈0.8,tan50°≈1.2)

  • 20. (2021九上·任城期中) 某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费80元时,床位可全部租出,若每张床位每天收费提高10元,则相应的减少了10张床位租出,如果每张床位每天以10元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天应提高多少元?
  • 21. (2021九上·任城期中) 如图,点O是坐标原点,△OBA∽△DOC,边OA、OC都在x轴的正半轴上.已知点B的坐标为(12,16),∠BAO=∠OCD=90°,OD=10,反比例函数的图象经过点D,交AB边于点E.

    1. (1) 求该反比例函数的解析式;
    2. (2) 求BE的长.
  • 22. (2021九上·任城期中) 如图,在小山的东侧A庄,有一热气球,由于受西风的影响,以每分钟35m的速度沿着与水平方向成75°角的方向飞行,40min时到达C处,此时气球上的人发现气球与山顶P点及小山西侧的B庄在一条直线上,同时测得B庄的俯角为30°.又在A庄测得山顶P的仰角为45°,求A庄与B庄的距离及山高( ≈1.4, ≈1.7, ≈2.45,结果精确到个位).

  • 23. (2021九上·任城期中) 如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P是抛物线上一动点,连接PB,PC.

    1. (1) 求抛物线的解析式;
    2. (2) 如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求△PBC的面积;
    3. (3) 抛物线上存在一点P,使△PBC是以BC为直角边的直角三角形,求点P的坐标.

微信扫码预览、分享更方便

试卷信息