当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省济宁市微山县2021-2022学年八年级上学期数学期中...

更新时间:2022-01-14 浏览次数:110 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 16. (2021八上·微山期中) 已知:如图,AD是△ABC的角平分线,DE∥AC,DE交AB于点E,DF∥AB,DF交AC于点F.求证:DA平分∠EDF.

  • 17. (2021八上·微山期中) 如图,点B,C,E,F在同一条直线上,BF=CE,AB=DE,∠B=∠E.猜想∠A与∠D的大小关系,并说明理由.

  • 18. (2021八上·微山期中) △OAB在平面直角坐标系中的位置如图所示,点O(0,0),点A(1,﹣3),点B(4,﹣1).

    ⑴画出△OAB关于x轴对称的△OA1B1

    ⑵在x轴找到一点P,使PA+PB的值最小;(画出图形,保留痕迹,不写画法)

    ⑶求△OAB的面积.

  • 19. (2021八上·微山期中) 如图,已知四个关系式:①AC=DC;②BC=EC;③∠DCA=∠ECB:④AB=DE.

    1. (1) 从上面四个关系式中任取三个为条件,余下的一个为结论,组成一个命题.在组成的命题中真命题的个数是
    2. (2) 从(1)中选择一个真命题进行证明

      已知:

      求证:

      证明:

  • 20. (2021八上·微山期中) 已知:如图,在四边形ABCD中,AB∥DC,AC平分∠BAD,AC⊥BC于点C.

    1. (1) 若∠B=75°,求∠D的度数;
    2. (2) 求证:AB=2CD.
  • 21. (2021八上·微山期中) (发现问题)

    小强在一次学习过程中遇到了下面的问题:

    如图1,AD是△ABC的中线,若AB=8,AC=6,求AD的取值范围.

    (探究方法)

    小强所在学习小组探究发现:延长AD至点E,使ED=AD,连接BE.可证出△ADC与△EDB,利用全等三角形的性质可将已知的边长与AD转化到同一个△ABE中,进而求出AD的取值范围.

    方法小结:从上面思路可以看出,解决问题的关键是将中线AD延长一倍,构造出全等三角形,我们把这种方法叫做倍长中线法.

    1. (1) (应用方法)请你利用上面解答问题的方法思路,写出求AD的取值范围的过程;
    2. (2) (拓展应用)已知:如图2,AD是△ABC的中线,BA=BC,点E在BC的延长线上,EC=BC.写出AD与AE之间的数量关系并证明.
    1. (1) 如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.则线段DE、BD与CE之间的数量关系是
    2. (2) 如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a,其中a为任意锐角或钝角.请问:(1)中的结论是还否成立?如成立,请你给出证明:若不成立,请说明理由;
    3. (3) 拓展与应用:如图③,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE.若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.

微信扫码预览、分享更方便

试卷信息