题库组卷系统-专注K12在线组卷服务
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
试题
试卷
试题
在线咨询
当前:
高中数学
小学
语文
数学
英语
科学
道德与法治
初中
语文
数学
英语
科学
物理
化学
历史
道德与法治
地理
生物学
信息技术
历史与社会(人文地理)
社会法治
高中
语文
数学
英语
物理
化学
历史
思想政治
地理
生物学
信息技术
通用技术
首页
手动组卷
章节同步选题
知识点选题
智能组卷
章节智能组卷
知识点智能组卷
细目表组卷
试卷库
同步专区
备考专区
高考专区
智能教辅
在线测评
测
当前位置:
高中数学
/
高考专区
试卷结构:
课后作业
日常测验
标准考试
|
显示答案解析
|
全部加入试题篮
|
平行组卷
试卷细目表
发布测评
在线自测
试卷分析
收藏试卷
试卷分享
下载试卷
下载答题卡
上海市青浦区2022届高三数学一模试卷
下载试题
平行组卷
收藏试卷
在线测评
发布测评
在线自测
答题卡下载
更新时间:2022-01-20
浏览次数:88
类型:高考模拟
试卷属性
副标题:
无
*注意事项:
无
上海市青浦区2022届高三数学一模试卷
更新时间:2022-01-20
浏览次数:88
类型:高考模拟
考试时间:
分钟
满分:
分
姓名:
____________
班级:
____________
学号:
____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
一、填空题
1.
(2022·青浦模拟)
若全集
, 则集合
.
答案解析
收藏
纠错
+ 选题
2.
(2022·青浦模拟)
不等式
的解集是
.
答案解析
收藏
纠错
+ 选题
3.
(2022·青浦模拟)
已知
为等差数列,
的前5项和
,
, 则
.
答案解析
收藏
纠错
+ 选题
4.
(2022·青浦模拟)
已知
的图象经过点
,
的反函数为
, 则
的图象必经过点
.
答案解析
收藏
纠错
+ 选题
5.
(2022·青浦模拟)
的二项展开式中
项的系数为
答案解析
收藏
纠错
+ 选题
6.
(2022·青浦模拟)
一个圆锥的侧面展开图是圆心角为
, 半径为18 cm的扇形,则圆锥的母线与底面所成角的余弦值为
.
答案解析
收藏
纠错
+ 选题
7.
(2022·青浦模拟)
已知双曲线中心在原点且一个焦点为
, 直线
与其相交于
,
两点,
中点横坐标为
, 则此双曲线的方程是
.
答案解析
收藏
纠错
+ 选题
8.
(2022·青浦模拟)
设向量
与
的夹角为
, 定义
与
的“向量积”:
是一个向量,它的模
, 若
,
, 则
.
答案解析
收藏
纠错
+ 选题
9.
(2022·青浦模拟)
把1、2、3、4、5这五个数随机地排成一个数列,要求该数列恰好先递增后递减,则这样的数列共有
.
答案解析
收藏
纠错
+ 选题
10.
(2022·青浦模拟)
已知函数
的图像向右平移
个单位得到函数
的图像,则
.
答案解析
收藏
纠错
+ 选题
11.
(2022·青浦模拟)
已知函数f(x)=
, 设a∈R,若关于x的不等式f(x)
在R上恒成立,则a的取值范围是
.
答案解析
收藏
纠错
+ 选题
12.
(2022·青浦模拟)
若数列:
中的每一项都为负数,则实数
的所有取值组成的集合为
.
答案解析
收藏
纠错
+ 选题
二、单选题
13.
(2024高二上·上海市期中)
下列条件中,能够确定一个平面的是( )
A .
两个点
B .
三个点
C .
一条直线和一个点
D .
两条相交直线
答案解析
收藏
纠错
+ 选题
14.
(2022·青浦模拟)
已知公差为
的等差数列
的前
项和为
, 则“
, 对
,
恒成立”是“
”的( )
A .
充分不必要条件
B .
必要不充分条件
C .
充分必要条件
D .
既不充分也不必要条件
答案解析
收藏
纠错
+ 选题
15.
(2022·青浦模拟)
已知
均为复数,则下列命题不正确的是( )
A .
若
则
为实数
B .
若
, 则
为纯虚数
C .
若
, 则
为纯虚数
D .
若
, 则
答案解析
收藏
纠错
+ 选题
16.
(2022·青浦模拟)
从圆
上的一点向圆
引两条切线,连接两切点间的线段称为切点弦,则圆
内不与任何切点弦相交的区域面积为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
三、解答题
17.
(2022·青浦模拟)
在正四棱柱
中,
, 连接
, 得到三棱锥
的体积为2,点
分别为
和
的中点.
(1) 求正四棱柱
的表面积;
(2) 求异面直线
与
所成角的大小.
答案解析
收藏
纠错
+ 选题
18. 已知
,
,
(1) 求
的最小正周期及单调递减区间;
(2) 已知锐角
的内角
的对边分别为
, 且
,
, 求
边上的高的最大值.
答案解析
收藏
纠错
+ 选题
19.
(2022·青浦模拟)
考虑到高速公路行车安全需要,一般要求高速公路的车速
(公里/小时)控制在
范围内.已知汽车以
公里/小时的速度在高速公路上匀速行驶时,每小时的油耗(所需要的汽油量)为
升,其中
为常数,不同型号汽车
值不同,且满足
.
(1) 若某型号汽车以120公里/小时的速度行驶时,每小时的油耗为
升,欲使这种型号的汽车每小时的油耗不超过9升,求车速
的取值范围;
(2) 求不同型号汽车行驶100千米的油耗的最小值.
答案解析
收藏
纠错
+ 选题
20.
(2022·青浦模拟)
已知抛物线
.
(1) 过抛物线焦点
的直线交抛物线于
两点,求
的值(其中
为坐标原点);
(2) 过抛物线上一点
, 分别作两条直线交抛物线于另外两点
、
, 交直线
于
两点,求证:
为常数
(3) 已知点
, 在抛物线上是否存在异于点
的两个不同点
, 使得
若存在,求
点纵坐标的取值范围,若不存在,请说明理由.
答案解析
收藏
纠错
+ 选题
21.
(2022·青浦模拟)
如果数列
每一项都是正数,且对任意不小于2的正整数
满足
, 则称数列
具有性质
.
(1) 若
(
均为正实数),判断数列
是否具有性质
;
(2) 若数列
都具有性质
, 证明:数列
也具有性质
;
(3) 设实数
, 方程
的两根为
, 若
对任意
恒成立,求所有满足条件的
.
答案解析
收藏
纠错
+ 选题
微信扫码预览、分享更方便
详情
试题分析
(总分:
0
)
总体分析
题量分析
难度分析
知识点分析
试卷信息