当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省连云港市赣榆区2020-2021学年高二下学期数学期中...

更新时间:2022-04-27 浏览次数:49 类型:期中考试
一、单选题
二、多选题
  • 9. (2021高二下·赣榆期中) 下列说法正确的是(   )
    A . 一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,则不同的选法种数是20 B . 若随机变量ξ服从正态分布N(1, ),P()=0.79,则P()=0.21 C . 若随机变量ξ服从二项分布:ξ B(4,0.25),则E(2ξ+3)=5 D .
  • 10. (2021高二下·赣榆期中) 已知复数的共轭复数为 , 则下列表达式成立的是(   )
    A . B . C . D .
  • 11. (2021高二下·赣榆期中) 已知的二项展开式中二项式系数之和为64,则下列结论正确的是(   )
    A . 二项展开式中各项系数之和为 B . 二项展开式中系数最大的项为 C . 二项展开式中无常数项; D . 二项式展开式中二项式系数最大的项为第4项.
  • 12. (2021高二下·赣榆期中) 近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布N( , 302)和N(280,402),则下列选项正确的是(   )

    附:若随机变量X服从正态分布N(),则P(<X<)≈0.6826.

    A . 若红玫瑰日销售量范围在( , 280)的概率是0.6826,则红玫瑰日销售量的平均数约为250 B . 白玫瑰日销售量比红玫瑰日销售量更集中 C . 红玫瑰日销售量比白玫瑰日销售量更集中 D . 白玫瑰日销售量范围在(280,320)的概率约为0.3413
三、填空题
四、解答题
  • 17. (2021高二下·赣榆期中) 已知 是复平面内的平行四边形,顶点A,B,C对应的复数分别为 .
    1. (1) 求点D对应的复数为
    2. (2) 令复数 ,当实数 取什么值时,复数z表示的点位于第二或四象限.
  • 18. (2021高二下·赣榆期中) 已知袋中装有5个白球,2个黑球,3个红球,现从中任取3个球.
    1. (1) 求恰有一个白球的方法种数;
    2. (2) 求至少有一个红球的方法种数;
    3. (3) 设随机变量X为取出3球中黑球的个数,求X的概率分布及数学期望.
  • 19. (2021高二下·赣榆期中) 已知 , 且
    1. (1) 求的值;
    2. (2) 求的值;
    3. (3) 求的值.
  • 20. (2021高二下·赣榆期中) 已知(m,n是正整数).
    1. (1) 若时,展开式中含x的一次项的系数为-16 ,求m,n的值;
    2. (2) 若时,展开式中含x的一次项的系数为36,求展开式中含项的系数的最小值.

       

  • 21. (2021高二下·赣榆期中) 为加强进口冷链食品监管,某省于2020年底在全省建立进口冷链食品集中监管专仓制度,在口岸、目的地市或县(区、市)等进口冷链食品第一入境点,设立进口冷链食品集中监管专仓,集中开展核酸检测和预防性全面消毒工作,为了进一步确定某批进口冷冻食品是否感染病毒,在入关检疫时需要对其采样进行化验,若结果呈阳性,则有该病毒;若结果呈阴性,则没有该病毒,对于 ,( )份样本,有以下两种检验方式:一是逐份检验,则需检验 次:二是混合检验,将 份样本分别取样混合在一起,若检验结果为阴性,那么这 份全为阴性,因而检验一次就够了;如果检验结果为阳性,为了明确这 份究竟哪些为阳性,就需要对它们再次取样逐份检验,则 份检验的次数共为 次,若每份样本没有该病毒的概率为 ),而且样本之间是否有该病毒是相互独立的.
    1. (1) 若 ,求2份样本混合的结果为阳性的概率;
    2. (2) 若取得4份样本,考虑以下两种检验方案:方案一:采用混合检验;方案二:平均分成两组,每组2份样本采用混合检验.若检验次数的期望值越小,则方案越“优”,试问方案一、二哪个更“优”?请说明理由.
  • 22. (2021高二下·赣榆期中) , 集合的所有3个元素的子集个数为 , 这些子集记为.
    1. (1) 当时,求集合中所有元素之和
    2. (2) 记中最小元素与最大元素之和,记 , 求的表达式.

微信扫码预览、分享更方便

试卷信息