当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河北省唐山市迁安市2020-2021学年八年级下学期期末数学...

更新时间:2022-04-18 浏览次数:51 类型:期末考试
一、单选题
二、填空题
  • 17. (2022八下·卢龙期末) 下表是某商店出售货物时其数量x(个)与售价y(元)的对应关系表:

    数量x(个)

    1

    2

    3

    4

    5

    售价y(元)

    8+0.2

    16+0.2

    24+0.2

    32+0.2

    40+0.2

    根据表中提供的信息可知y与x之间的关系式是

  • 18. (2022八下·卢龙期末) 如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为

  • 19. (2021八下·迁安期末) 如图,在矩形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O→C→B→A→O的线路移动.

    1. (1) 点B的坐标为
    2. (2) 当点P移动4秒时,请写出点P的坐标
    3. (3) 当点P移动2026秒时,请写出点P的坐标
三、解答题
  • 20. (2021八下·迁安期末)           
    1. (1) 某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度已知无人机在上升和下降过程中速度相同,设无人机的飞行高度M(米)与操控无人机的时间x(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:

      ①在上升或下降过程中,无人机的速度是米/分;

      ②图中a表示的数是 , b表示的数是

      ③无人机在60米高的上空停留的时间是分钟;

    2. (2) 已知平面直角坐标系中有一点P(2m+1,m﹣3).

      ①若点P在第四象限,求m的取值范围

      ②当点P到y轴的距离为3时,求点P的坐标

  • 21. (2021八下·迁安期末) 体弘扬中华传统文化,某校组织八年级1000名学生参加汉字听写大赛,为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,请根据尚未完成的图表,解答问题.

    组别

    分数段

    频数

    频率

    50.5~60.5

    16

    0.08

    60.5~70.5

    30

    a

    70.5~80.5

    50

    0.25

    80.5~90.5

    b

    0.40

    90.5~100.5

     

    c

    1. (1) 本次抽样调查的样本容量为,表中a=,b=,c=补全频数分布直方图
    2. (2) 若把各组的频率绘制成扇形统计图,则第三组对应的扇形圆心角是
    3. (3) 若抽取的样本具有较好的代表性,且成绩超过80分为优秀,根据样本估计该校八年级学生中汉字听写能力优秀的约有多少人?
  • 22. (2021八下·迁安期末) 如图,△ABC中,AB=AC,D、F分别为BC、AC的中点,连接DF并延长到点E,使DF=FE,连接AE、AD、CE.

    1. (1) 求证:四边形AECD是矩形.
    2. (2) 当△ABC满足什么条件时,四边形AECD是正方形,并说明理由.
  • 23. (2021八下·迁安期末) 某学校欲购置一批标价为4800元的某种型号电脑,需求数量在6至15台之间.经与两个专卖店商谈,优惠方法如下:

    甲店:购买电脑打八折;

    乙店:先赠一台电脑,其余电脑打九折优惠.

    设学校欲购置x台电脑,甲店购买费用为y(元),乙店购买费用为y(元).

    1. (1) 分别写出购买费用y、y与所购电脑x(台)之间的函数关系式;
    2. (2) 对x的取值情况进行分析,说明这所学校购买哪家电脑更合算?
  • 24. (2021八下·迁安期末) 已知:如图,在▱ABCD中,对角线AC、BD相交于点O,点G、H分别是AD、BC的中点,点E、O、F分别是对角线BD上的四等分点,顺次连接G、E、H、F.

    1. (1) 求证:四边形GEHF是平行四边形;
    2. (2) 若四边形GEHF是菱形.

      ①线段AB和BD有何位置关系?请说明理由.

      ②若AB=2,BD=2AB时,求四边形GEHF的面积.

  • 25. (2021八下·迁安期末) 甲、乙两人相约春游去登山,山高300米,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

    1. (1) b=m;
    2. (2) 若乙提速后,乙登山的速度是甲登山速度3倍;

      ①则t=            ▲            min;

      ②登山多长时间乙追上了甲,求出此时x的值;

      ③在上山过程中,先到达山顶的一人原地休息等待另一人,当甲、乙两人距地面高度差为50m时,求出此时x的值.

微信扫码预览、分享更方便

试卷信息