当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

辽宁省沈阳市和平区2020-2021学年七年级下学期期末数学...

更新时间:2024-07-13 浏览次数:165 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 18. (2021七下·和平期末) 先化简,再求值:[(10+x)(600﹣10x)﹣6000]÷5x.其中x=﹣1.
  • 19. (2021七下·和平期末) 如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF//DE的理由.(请在括号中填上推理依据)

    解:∵∠1=∠2(已知)

    ∴CF//BD(                  ▲                  

    ∴∠3+∠CAB=180°(                  ▲                  

    ∵∠3=∠C(已知)

    ∴∠C+∠CAB=180°(等式的性质)

    ∴AB//CD(                  ▲                  

    ∴∠4=∠EGA(两直线平行,同位角相等)

    ∵∠4=∠5(已知)

    ∴∠5=∠EGA(等量代换)

    ∴ED//FB(                  ▲                  

  • 20. (2021七下·和平期末) 如图所示有8张卡片,分别写有1,2,3,4,5,6,8,9这八个数字,将它们背面朝上洗匀后,任意抽出一张.

    1. (1) P(抽到数字9)=
    2. (2) P(抽到两位数)=
    3. (3) P(抽到的数大于5)=
    4. (4) P(抽到偶数)= .
  • 21. (2021七下·和平期末) 尺规作图:(不写作法,保留作图痕迹)已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠BAC=∠a.

  • 22. (2021七下·和平期末) 如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在点上)

    1. (1) 在图中作出△ABC关于直线对称的△A1B1C1(点A的对应点是点A1 , 点B的对应点是点B1 , 点C的对应点是点C1);
    2. (2) 在直线l上画出点P,使PA+PC最小;
    3. (3) 直接写出△A1BC的面积为
  • 23. (2021七下·和平期末) 如图,△ABC是等边三角形,点D是△ABC内一点,连接AD,BD,CD,∠BDC=100°,以AD为一边在AD左侧作等边三角形ADE,连接CE. 

    1. (1) △ABD与△ACE全等吗?说明你的理由;

      解:△ABD≌△ACE,理由如下:

      ∵△ABC与△ADE都是等边三角形

      ∴AB=AC

      AD=AE

      ∠CAB=∠EAD=60°

      ∴∠CAB﹣∠CAD=∠EAD﹣∠CAD

      ∴∠DAB=∠EAC

      在△ABD与△ACE中

    2. (2) 当∠ADB=150°时,请判断△CDE的形状,并说明理由;
    3. (3) 当△CDE是等腰三角形时,请直接写出∠ADB的度数为
  • 24. (2021七下·和平期末) 某数学活动小组结合图象设计如下情景:已知家、书店、学校依次在同一条直线上,书店离家8km,学校离家25km,小明从家出发,匀速骑行0.4h到达书店;在书店停留0.6h后,匀速骑行1h到达学校;在学校学习一段时间,然后回家;回家途中,匀速骑行1h后减速,继续匀速骑行回到家.给出的图象反映了这个过程中小明离家的距离与离开家的时间之间的对应关系.

    请根据相关信息解答下列问题:

    1. (1) 填表:

      离开家的时间/h

      0.3

      0.8

      1.6

      3

      4.5

      5.2

      离开家的距离/km

    2. (2) 填空:

      ①书店到学校的距离为km;

      ②从学校回家途中减速前的骑行速度为

      ③当小明离家的距离为2km时,他离开家的时间为

  • 25. (2021七下·和平期末) 如图,在△ABC中,AC=BC,点D在边AB上,AB=4BD,连接CD,点E,F在线段CD上,连接BF,AE,∠BFC=∠AEC=180°-∠ACB.

    1. (1) ①∠FBC与∠ECA相等吗?说明你的理由;

      ②△FBC与△ECA全等吗?说明你的理由;

    2. (2) 若AE=11,EF=8,则请直接写出BF的长为
    3. (3) 若△ACE与△BDF的面积之和为12,则△ABC的面积为

微信扫码预览、分享更方便

试卷信息