当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省济南市济阳区2022年数学一模试题

更新时间:2022-06-13 浏览次数:74 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 20. (2022·济阳模拟) 解不等式组 , 并写出它的所有整数解
  • 21. (2023八下·巴州月考) 如图,已知四边形ABCD是平行四边形,BE⊥AC, DF⊥AC,求证:AE=CF.

  • 22. (2022·济阳模拟) 某校举行了冬奥会知识竞赛,在全校随机抽取了部分学生的竞赛成绩进行整理和分析(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图. 其中“60≤x<80”这组的数据如下:

    61,74,68,62,73,70,72,78,69,74,79,68,74.

    竞赛成绩分组统计表

    组别

    竞赛成绩分组

    频数

    1

    60x<70

    a

    2

    70x<80

    b

    3

    80x<90

    12

    4

    90x100

    d

    竞赛成绩扇形统计图

    请根据以上信息,解答下列问题:

    1. (1) 填空:a=
    2. (2) 统计图中第四组对应圆心角为度;
    3. (3) “70≤x<80”这组数据的众数是 ,中位数是
    4. (4) 若学生竞赛成绩达到90分及以上获奖,请你估计全校1200名学生中获奖的人数.
  • 23. (2022·济阳模拟) 如图,在△ABC中, , 以AB为直径的分别交AC,BC于点D,E,过B点的圆的切线交AC的延长线于点F.

    1. (1) 求证:∠FBC=∠BAC;
    2. (2) 若 , AD=6,求的半径的长.
  • 24. (2022·济阳模拟) 某超市共用24000元同时购进甲、乙两种型号书包各200个,购进甲型号书包40个比购进乙型书包30个少用100元.
    1. (1) 求甲、乙两种型号书包的进价各为多少元?
    2. (2) 若超市把甲、乙两种型号书包均按每个90元定价进行零售,同时为扩大销售,拿出一部分书包按零售价的8折进行优惠销售.商场在这批背包全部售完后,若总获利不低于10200元,则超市用于优惠销售的书包数量最多为多少个?
  • 25. (2022·济阳模拟) 如图,四边形AOBC是的正方形,D为BC中点,以O为坐标原点,OA,OB所在的直线为坐标轴建立平面直角坐标系,A点坐标(0,4),过点D的反比例函数y=(k≠0)的图象与边AC交于E点,F是线段OB上的一动点.

    备用图

    1. (1) 求k的值并直接写出点E的坐标;
    2. (2) 若AD平分∠CAF,求出F点的坐标;
    3. (3) 若△AFD的面积为S1 , △AFO的面积为S2 . 若S1:S2=3:2,判断四边形AEFO的形状.并说明理由.
  • 26. (2022·济阳模拟) 在直角△ABC中,∠ACB=90° , AC=3,BC=4,点D、E和F分别是斜边AB、直角边AC和直角边BC上的动点,∠EDF=90°,

    1. (1) 如图1,若四边形DECF是正方形,求这个正方形的边长.
    2. (2) 如图2,若E点正好运动到C点,并且tan∠DCF= , 求BF的长.
    3. (3) 如图3,当时,求的值
  • 27. (2022·济阳模拟) 抛物线过点A(-1,0),点B(3,0),与y轴交于C点.

    1. (1) 求抛物线的表达式及点C的坐标;
    2. (2) 如图1,设M是抛物线上的一点,若∠MAB=45°,求M点的坐标;
    3. (3) 如图2,点P在直线BC下方的抛物线上,过点P作PD⊥x轴于点D,交直线BC于点E,过P点作PF⊥BC,交BC与F点,△PEF的周长是否有最大值,若有最大值,求出此时P点的坐标.若不存在,说明理由.

微信扫码预览、分享更方便

试卷信息