当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省眉山市2022届高中理数第三次诊断性考试试卷

更新时间:2024-07-13 浏览次数:70 类型:高考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2022·眉山模拟) 将① , ② , ③的面积为之一填入空格中(只填番号),并完成该题.

    已知锐角三个内角A,B,C所对的边分别为a,b,c,____.

    1. (1) 求角A;
    2. (2) 若 , 当时,求函数的值域.
  • 18. (2022·眉山模拟) 新冠疫苗有三种类型:腺病毒载体疫苗、灭活疫苗和重组蛋白亚单位疫苗.腺病毒载体疫苗只需要接种一针即可产生抗体,适合身体素质较好的青壮年,需要短时间内完成接种的人群,突发聚集性疫情的紧急预防.灭活疫苗和重组蛋白亚单位疫苗安全性高,适合老、幼、哺、孕及有慢性基础病患者和免疫缺陷人群,灭活疫苗需要接种两次.重组蛋白亚单位新冠疫苗需要完成全程三针接种,接种第三针后,它的有效保护作用为90%,人体产生的抗体数量提升5-10倍,甚至更高(即接种疫苗第三针后,有90%的人员出现这种抗疫效果).以下是截止2021年12月31日在某县域内接种新冠疫苗人次(单位:万人,忽略县外人员在本县接种情况)统计表:


    腺病毒载体疫苗

    灭活疫苗

    重组蛋白亚单位疫苗

    第一针

    0.5

    10

    110

    第二针

    0

    10

    110

    第三针

    0

    0

    100

    其中接种腺病毒载体疫苗的统计情况如下:

    接种时间

    接种原因

    接种人次(单位:人)

    3月

    疫情突发

    1500

    6月

    高考考务

    1000

    7月

    抗洪救灾

    2500

    1. (1) 遭遇3月疫情突发、服务6月高考考务、参加7月抗洪救灾的人都是不同的人.在已接种腺病毒载体疫苗的人员中随机抽取一名,求这个人参加了抗洪救灾的概率;
    2. (2) 在已接种灭活疫苗和重组蛋白亚单位疫苗的人员中,用分层抽样的方法抽取12人,其中接种重组蛋白亚单位疫苗的人员是根据人体产生的抗体数量是否至少提升5-10倍为依据分层抽样抽取的,再从这12人随机抽取3人,这3人中,人体产生的抗体数量至少提升5-10倍的人数为 , 求的分布列和数学期望.
  • 19. (2022·眉山模拟) 如图,已知在三棱柱中, , F是线段BC的中点,点O在线段AF上, , D是侧棱中点,.

    1. (1) 证明:平面
    2. (2) 若 , 点在平面ABC内的射影为O,求直线OE与平面所成角的正弦值.
  • 20. (2022·眉山模拟) 如图,椭圆的离心率为 e ,点上.A,B是的上、下顶点,直线l与交于不同两点C,D(两点的横坐标都不为零,l 不平行于 x轴).点E与C关于原点O对称,直线AE与BD交于点F,直线FO与 l 交于点M.

    1. (1) 求 b 的值;
    2. (2) 求点 M 到 x 轴的距离.
  • 21. (2022·眉山模拟) 已知函数.
    1. (1) 求的单调区间;
    2. (2) 若存在正数m,使得对任意恒成立,求a的最大值(参考结论:).
  • 22. (2022·眉山模拟) 已知圆C的参数方程是为参数).以原点O为极点,以x轴正半轴为极轴建立极坐标系,直线的极坐标方程为 , 将直线向左平移3个单位长度得到直线.
    1. (1) 求圆C的极坐标方程和直线的直角坐标方程;
    2. (2) 直线与圆C交于点A,B,求优弧和劣弧长度的比值.
  • 23. (2022·眉山模拟) 已知 , 不等式的解集为.
    1. (1) 求实数a的值;
    2. (2) 若 , 求的最小值.

微信扫码预览、分享更方便

试卷信息