当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省青岛西海岸新区2022年九年级二模数学试题

更新时间:2024-07-13 浏览次数:102 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 16. (2022·青岛模拟)             
    1. (1) 化简:; 
    2. (2) 已知二次函数与正比例函数的图象只有一个交点,求的值.
  • 17. (2022·青岛模拟) 小明和小亮做游戏,规则如下:将正面分别写有数字1,2,3,4的4张卡片背面朝上,洗匀.先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,若抽得的2张卡片上的数字之和为2的倍数则小明胜,若抽得的2张卡片上的数字之和为3的倍数则小亮胜.这个游戏对双方公平吗?请说明理由.
  • 18. (2022·青岛模拟) 如图,在港口A处的正东方向有两个相距 的观测点B、C,一艘轮船从A处出发, 北偏东 方向航行至D处, 在B、C处分别测得 求轮船航行的距离AD (参考数据:

  • 19. (2022·青岛模拟) 某校为了解学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:

    ①七年级成绩在这一组的是:70,72,74,75,76,76,77,77,77,78,79;

    ②七年级成绩频数分布直方图及七、八年级成绩的平均数、中位数分别如下:

    年级

    平均数

    中位数

    76.9

    79.2

    79.5

    根据以上信息,回答下列问题:

    1. (1) 在这次测试中,七年级在80分以上(含80分)的有人;
    2. (2) 表中m的值为
    3. (3) 在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;
    4. (4) 该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.
  • 20. (2023八下·睢宁期末) 如图,已知过点 的直线 与直线 相交于点 .

    1. (1) 求直线 的解析式;
    2. (2) 求四边形 的面积.
  • 21. (2022·青岛模拟) 已知是等边三角形,点分别在边上,且 , 过点平行于的直线与的延长线交于点 , 连接

    1. (1) 求证:
    2. (2) 若的中点,请判断四边形的形状,并说明理由.
  • 22. (2022·青岛模拟) “童心迎六一,欢乐共成长”,某超市计划在儿童节期间进行一款文具的促销活动.该文具进价为5元/件,售价为9元/件时,当天的销售量为100件.在销售过程中发现:售价每下降0.5元,当天的销售量就增加5件.设当天销售单价统一为元/件( , 且是按0.5元的倍数下降),当天销售利润为元.
    1. (1) 求的函数关系式;
    2. (2) 要使当天销售利润不低于240元,求当天销售单价所在的范围;
    3. (3) 若每件文具的利润不超过60%,要想当天获得最大利润,每件文具的售价应为多少元?并求出最大利润.
  • 23. (2022·青岛模拟) 问题提出:把五个不同的棋子放在如图所示的方格纸内,使每行每列只能出现一个棋子,共有多少种不同的放法?

    问题探究:为了解决上面的问题,我们先从最简单的情形入手,从中找到解决问题的方法.

    探究一:

    若把两个不同的棋子放在方格纸内,并使每行每列只能出现一个棋子,可看成分两步完成这件事情.第一步放棋子 , 棋子可以放在4个方格的任意一个中,故棋子有4种不同的放法.第二步放棋子 , 由于棋子已放定,那么放棋子的那一行和那一列中的其他方格内也不能放棋子 , 故还剩下1个方格可以放棋子 , 棋子只有1种放法.如:棋子放在方格1中,那么方格2和方格3也不能放棋子 , 棋子只能放在方格4中.由于第一步有4种放法,第二步有1种放法,所以共有种不同放法.

    探究二:

    若把三个不同的模子放在方格纸内,并使每行每列只能出现一个棋子,可看成分三步完成这件事情.第一步放棋子 , 棋子可以放在9个方格的任意一个中,故棋子有9种不同的放法.第二步放棋子 , 由于棋子已放定,那么放棋子的那一行和那一列中的其他方格内也不能放棋子 , 此时只剩四个方格可以放棋子 , 且四个方格的位置可类似看作“方格”模型,所以接下来放棋子和棋子的两步有种不同的放法.由于第一步有9种放法,第二步和第三步有种放法,所以共有种不同的放法.

    1. (1) 探究三:

      若把四个不同的棋子放在方格纸内,可看成分四步完成这件事情.第一步放棋子 , 棋子可以放在个方格的任意一个中,故棋子种不同的放法.第二步放棋子 , 由于棋子已放定,那么放棋子的那一行和那一列中的其他方格内也不能放棋子 , 此时只有个方格可以放棋子 , 且这些方格的位置可类似看作“方格”模型,所以接下来放棋子 , 棋子和棋子的三步有种不同的放法.所以共有种不同的放法.

    2. (2) 问题解决:把五个不同的棋子放在方格纸内,并使每行每列只能出现一个棋子,共有种不同的放法.
    3. (3) 拓展延伸:若安排甲,乙,丙,丁,戊五人分别坐在五个不同的位置上,共有种不同的坐法.
  • 24. (2022·青岛模拟) 如图,在中,的中点.点从点出发,沿方向匀速运动,速度为1cm/s;同时,点从点出发,沿方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.过点 , 交的延长线于点 , 过点 , 交于点 . 设运动时间为 , 请解答下列问题:

    1. (1) 当为何值时,是直角三角形?
    2. (2) 连接 , 设四边形的面积为 , 试确定的函数关系式;
    3. (3) 当为何值时,四边形的面积与的面积相等?
    4. (4) 在运动过程中,是否存在某一时刻 , 使平分?若存在,求出的值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息