当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省三门峡市2021-2022学年高二下学期理数期末质量检...

更新时间:2024-11-07 浏览次数:57 类型:期末考试
一、单选题
二、填空题
三、解答题
    1. (1) 求实数a的值;
    2. (2) 求 的值.
  • 18. (2022高二下·三门峡期末) 在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付,出门不带现金的人数正在迅速增加.某机构随机抽取了一组市民,并统计他们各自出门随身携带现金(单位:元)的情况,制作出如图所示的茎叶图.规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.

    1. (1) 根据茎叶图的数据,完成如下的2×2列联表,并判断是否有99%的把握认为“手机支付族”与“性别”有关;


      男性

      女性

      合计

      手机支付族

      非手机支付族

      合计

      45

    2. (2) 从携带现金最多的10人中任取4人,求至少有2名男性的取法有多少种.
  • 19. (2022高二下·三门峡期末) 甲、乙两人玩如下游戏:两人分别拿出一枚硬币同时扣在桌子上(硬币的正反面自己决定,两人互不影响),然后把手拿开,如果都是正面,则乙给甲3元,如果都是反面,则乙给甲1元,如果一正一反则甲给乙2元.如此进行下去,把频率当做概率.
    1. (1) 若甲出正面的频率0.7,乙出正面的频率为0.5,甲、乙各出硬币一次,求甲的收益X的分布列及数学期望;
    2. (2) 这个游戏多次进行下去,乙能否通过调整自己出正面的频率,使得无论甲出正面还是反面,自己都不会输?如果能,求出乙不输时出正面的频率的范围,如果不能,说明理由.
  • 20. (2022高二下·三门峡期末) 某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

    日期

    12月1日

    12月2日

    12月3日

    12月4日

    12月5日

    温差

    10

    11

    13

    12

    8

    发芽数(颗)

    23

    25

    30

    26

    16

    该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的组数据求线性回归方程,再对被选取的2组数据进行检验.

    1. (1) 求选取的2组数据恰好是不相邻2天数据的概率;
    2. (2) 若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出关于的线性回归方程
    3. (3) 若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
  • 21. (2022高二下·滦南期末) 某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:

    等级

    标准果

    优质果

    精品果

    礼品果

    个数

    10

    30

    40

    20

    1. (1) 若将频率视为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率.(结果用分数表示)
    2. (2) 用样本估计总体,果园老板提出两种购销方案给采购商参考.

      方案1:不分类卖出,单价为20元.

      方案2:分类卖出,分类后的水果售价如下:

      等级

      标准果

      优质果

      精品果

      礼品果

      售价(元/kg)

      16

      18

      22

      24

      从采购商的角度考虑,应该采用哪种方案?

    3. (3) 用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,表示抽取的是精品果的数量,求的分布列及数学期望.
  • 22. (2022高二下·三门峡期末) 在直角坐标系xOy中,P(0,1),曲线C1的参数方程为 (t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为
    1. (1) 求曲线C1的普通方程和C2的直角坐标方程;
    2. (2) 曲线C1与C2交于M,N两点,求||PM|﹣|PN||.
    1. (1) 若m=0,求不等式的解集;
    2. (2) 若函数的最小值为3,求m的值.

微信扫码预览、分享更方便

试卷信息