当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

(人教版)2022年暑假七年级数学复习巩固专题17 三元一次...

更新时间:2022-07-07 浏览次数:105 类型:复习试卷
一、单选题
二、填空题
  • 11. (2022七下·丹江口期中) 小华和小慧到校门外文具店买文件,小华购铅笔2支,练习本2本,圆珠笔1支,共付9元钱;小慧购同样铅笔1支,练习本4本,圆珠笔2支,共付12元钱,若小明去买与她们一样的购铅笔1支、练习本2本、圆珠笔1支,他需付元钱.
  • 13. (2021七下·巴南期末) “端午节”是我国的传统佳节,民间历来有吃粽子的习俗.某超市准备了515个豆沙粽,525个火腿粽和若干个腊肉棕,将这些粽子分成了A,B,C三类礼品盒进行包装.A类礼品盒里有4个豆沙粽,4个火腿粽和6个腊肉粽;B类礼品盒里有3个豆沙粽,5个火腿粽和6个腊肉粽;C类礼品盒里有6个豆沙粽,4个火腿粽和4个腊肉粽.已知A,B,C三类礼品盒的数量都为正整数,并且A类礼品盒少于44盒,B类礼品盒少于49盒.如果所有礼品盒里的腊肉粽的总个数为m,则m=
  • 14. (2021七下·渝北期末) “吃了端午粽,才把棉衣送”,每逢农历的五月初五端午节,大家都会阖家团聚,品尝端午粽,尽享天伦之乐.今年端午节前夕某商场结合当地的情况,对A, 三种粽子进行搭配销售,并推出甲、乙两种盒装粽子,每一种盒装粽子的成本是该盒中所有A, 三种粽子的成本之和(盒子的费用不计).每盒甲由3个A,1个 ,1个 组成;每盒乙由2个A,3个 ,3个 组成.每盒甲中所有A, 的成本之和是1个A成本的4倍,每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.该商场在端午节这天销售这两种盒装粽子的总销售额为14700元,总利润率为22.5%.则该商场在端午节这天销售甲种盒装粽子的总利润是元.
  • 15. (2021七下·綦江期末) 全球棉花看中国,中国棉花看新疆.新疆长绒棉花是世界顶级棉花,品质优,产量大,常年供不应求.綦江区某超市为了支持新疆棉花,在“五一节”进行促销活动,将新疆棉制成 三种品牌毛巾混装成甲、乙、丙三种礼包销售,其中甲礼包含1条 品牌毛巾、2条 品牌毛巾;乙礼包含2条 品牌毛巾、2条 品牌毛巾,3条 品牌毛巾;丙礼包含2条 品牌毛巾、4条 品牌毛巾,每个礼包的售价等于礼包各条毛巾售价之和,5月1日当天,超市对 三个品牌毛巾的售价分别打8折、7折、5折销售,5月2日恢复原价,小明发现5月1日一个甲礼包的售价等于5月2日一个乙礼包售价的40%,5月1日一个乙礼包的售价比5月2日一个丙礼包售价少0.8元,若 三个品牌的毛巾原价都是正整数,且 品牌毛巾的原价不超过11元,则小明在5月1日购买的一个甲礼包和一个乙礼包,应该付元.
三、解答题
  • 17. 一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
  • 18. 若(3a+2b-c)2 互为相反数,求a、b、c的值.
  • 19. 组装甲、乙、丙3种产品,需用A、B、C3种零件.每件甲需用A、B各2个;每件乙需用B、C各1个;每件丙需用2个A和1个C.用库存的A、B、C3种零件,如组装成p件甲产品、q件乙产品、r件丙产品,则剩下2个A和1个B,C恰好用完.求证:无论怎样改变生产甲、乙、丙的件数,也不能把库存的A、B、C3种零件都恰好用完.

  • 20. 在研究问题“已知 , 求a+b﹣c的值.”时,三个同学各提出了自己的看法.甲说:“三个未知数,两个方程,条件不够,不能求出abc的值,a+b﹣c的值很难确定.”;乙说:“是求a+b﹣c的值,可以把a+b﹣c看做一个整体,设a+b﹣c=m,应该可以求解”;丙说:“可以把其中一个未知数c当做已知量,三元一次方程组化为二元一次方程组,从而求出a,b的表达式,再求a+b﹣c的值”.

    (1)根据他们的说法,请用合适的方法求a+b﹣c的值;

    (2)若已知b≤c,你能确定x2+a﹣2b是否有最值?若有,请求出最值和相应的a、b、c的值.

  • 21. 一农妇在市场卖葱,当时市场上的葱价是1.00元一斤,一葱贩对农妇说:“我想把你的葱分开来买,葱叶0.50元一斤,葱白0.50元一斤.”农妇听了葱贩的话,不假思索就把葱全部卖完.当农妇数过钱之后才发现只卖了一半钱.此时葱贩已不见踪影.聪明的你,请运用数学语言揭穿葱贩的把戏.

    过程如下:设总量z斤,葱叶x斤,葱白y斤,列方程

    ∵x+y=z,∴卖给葱贩的钱为0.5x+0.5y=0.5z,

    而实际应卖的钱为1.0x+1.0y=1.0z,结果一目了然,那葱贩只用了一半钱就买了所有葱.

    (1)生活常识告诉我们,人们在吃葱的时候主要吃的是葱白,葱白应比葱叶卖的贵.

    假设一根葱的葱叶和葱白重量相同,葱叶和葱白的价钱之和仍是1.00元.请用数学语言说明此时农妇还是只卖了一半的钱.

    (2)假设一根葱的葱叶和葱白重量不同,且葱叶的重量大于葱白的重量,葱叶0.20元一斤,葱白0.80元一斤.请用数学语言说明此时农妇卖的钱少于一半.

  • 22. 已知== , 且x+y+z=12,求x,y,z的值.

  • 23. 某学校计划用104 000元购置一批电脑(这批款项须恰好用完,不得剩余或追加).经过招标,其中平板电脑每台1600元,台式电脑每台4000元,笔记本电脑每台4600元.

    (1)若学校同时购进其中两种不同类型的电脑共50台,请你帮学校设计该如何购买;

    (2)若学校同时购进三种不同类型的电脑共26台(三种类型的电脑都有),并且要求笔记本电脑的购买量不少于15台,请你帮学校设计购买方案.

微信扫码预览、分享更方便

试卷信息