当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省揭阳市普宁市2021-2022学年八年级上学期期末数学...

更新时间:2022-07-20 浏览次数:51 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 19. (2023八上·河东期中) 如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).

    1. (1) 在图中作出△ABC关于y轴对称的图形△A1B1C1
    2. (2) 写出点A1 , B1 , C1的坐标;
    3. (3) 求△ABC的面积.
  • 20. (2021八上·普宁期末) 如图,在△ABC中,D是BC上一点,AD=BD,∠C=∠ADC,∠BAC=57°,求∠DAC的度数.

  • 21. (2021八上·普宁期末) 某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:

    测试项目

    测试成绩/分

    笔试

    92

    90

    95

    面试

    85

    95

    80

    其次,对三名候选人进行了笔试和面试两项测试.各项成绩如右表所示:图二是某同学根据上表绘制的一个不完整的条形图.请你根据以上信息解答下列问题:

    1. (1) 补全图一和图二.
    2. (2) 请计算每名候选人的得票数.
    3. (3) 若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
  • 22. (2021八上·普宁期末) 如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上.

    1. (1) 求证:∠ADB=90°;
    2. (2) 若AE=2,AD=4,求AC.
  • 23. (2021八上·普宁期末) 进入12月以来某些海鱼的价格逐渐上涨,某农贸市场水产商户老王只好在进货数量上做些调整。12月份前两周两种海鱼的价格情况如下表:

    鲅鱼价格

    带鱼价格

    第一周

    8元/千克

    18元/千克

    第二周

    10元/千克

    20元/千克

    1. (1) 老王第一周购进了一批鲅鱼和带鱼,总货款是1700元,若按第二周的价格购进与上周相同数量的鲅鱼和带鱼,则需多花300元,求老王第一周购进鲅鱼和带鱼分别是多少千克;
    2. (2) 若第二周将这两种鱼的进货总量减少到120千克,设购进鲅鱼a千克,需要支付的货款为w元,则w与a的函数关系式为
    3. (3) 在(2)的条件下,若购进鲅鱼不超过80千克,则第二周老王购进这两种鱼的总货款最少应是多少元?
  • 24. (2021八上·普宁期末) 如图,过点A的两条直线l1 , l2分别与y轴交于点B,C,其中点B在原点上方,点C在原点下方,已知AB= , B(0,3).

    1. (1) 求点A的坐标;
    2. (2) 若△ABC的面积为4,求直线l2的表达式.
    3. (3) 在(2)的条件下,在直线l1上是否存在点M,使得△OAM的面积与△OCA的面积相等?若存在,求出M点的坐标;若不存在,请说明理由.
  • 25. (2022八上·永丰期末) 如图,以Rt△AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足+|b﹣2|=0.

    1. (1) C点的坐标为,A点的坐标为
    2. (2) 如图1,已知坐标轴上有两动点P、Q同时出发,点P从点C出发,沿x轴负方向以1个单位长度每秒的速度匀速移动,点Q从点O出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使SODP=SODQ?若存在,请求出t的值;若不存在,请说明理由;
    3. (3) 如图2,过点O作OG∥AC,作∠AOF=∠AOG交AC于点F,点E是线段OA上一动点,连接CE交OF于点H,当点E在线段OA上运动的过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由,

微信扫码预览、分享更方便

试卷信息