题库组卷系统-专注K12在线组卷服务
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
试题
试卷
试题
在线咨询
当前:
高中数学
小学
语文
数学
英语
科学
道德与法治
初中
语文
数学
英语
科学
物理
化学
历史
道德与法治
地理
生物学
信息技术
历史与社会(人文地理)
社会法治
高中
语文
数学
英语
物理
化学
历史
思想政治
地理
生物学
信息技术
通用技术
首页
手动组卷
章节同步选题
知识点选题
智能组卷
章节智能组卷
知识点智能组卷
细目表组卷
试卷库
同步专区
备考专区
高考专区
智能教辅
在线测评
测
当前位置:
高中数学
/
备考专区
试卷结构:
课后作业
日常测验
标准考试
|
显示答案解析
|
全部加入试题篮
|
平行组卷
试卷细目表
发布测评
在线自测
试卷分析
收藏试卷
试卷分享
下载试卷
下载答题卡
湖南省岳阳市2021-2022学年高一上学期数学期末教学质量...
下载试题
平行组卷
收藏试卷
在线测评
发布测评
在线自测
答题卡下载
更新时间:2024-07-13
浏览次数:102
类型:期末考试
试卷属性
副标题:
无
*注意事项:
无
湖南省岳阳市2021-2022学年高一上学期数学期末教学质量...
更新时间:2024-07-13
浏览次数:102
类型:期末考试
考试时间:
分钟
满分:
分
姓名:
____________
班级:
____________
学号:
____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
一、单选题
1.
(2022高一上·东莞期中)
下列元素与集合的关系中,正确的是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
2.
(2022高一上·岳阳期末)
若
, 且
, 则下列不等式恒成立的是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
3.
(2022高一上·岳阳期末)
已知角
为第三象限角,则点
在( )
A .
第一象限
B .
第二象限
C .
第三象限
D .
第四象限
答案解析
收藏
纠错
+ 选题
4.
(2022高一上·岳阳期末)
已知函数
. 若
存在2个零点,则
的取值范围是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
5.
(2022高一上·岳阳期末)
若
,
,
, 则a,b,c的大小关系为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
6.
(2022高一上·岳阳期末)
函数
与函数
在同一坐标系中的图像可能是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
7.
(2022高一上·岳阳期末)
将函数
的图象上各点的横坐标伸长为原来的3倍,纵坐标保持不变,再将所得图象向右平移
个单位,得到函数
的图象,则
的一个对称中心是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
8.
(2022高一上·岳阳期末)
已知函数
在
上单调递增,则实数
a
的取值范围为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
二、多选题
9.
(2022高一上·岳阳期末)
下列函数中,既是偶函数又在区间
上单调递增的是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
10.
(2022高一上·岳阳期末)
下列结论正确的是( )
A .
是第二象限角
B .
函数
的最小正周期是
C .
若
, 则
D .
若圆心角为
的扇形的弧长为
, 则该扇形的面积为
答案解析
收藏
纠错
+ 选题
11.
(2022高一上·岳阳期末)
若函数
(
且
)在R上为单调递增函数,则a的值可以是( )
A .
B .
2
C .
3
D .
4
答案解析
收藏
纠错
+ 选题
12.
(2022高一上·岳阳期末)
下列说法正确的是( )
A .
若函数
的零点所在区间为
, 则
B .
函数
的图象恒过一定点,这个定点是
C .
“
”是“
”的必要条件
D .
“
”是“关于x的方程
有一正根和一负根”的充要条件
答案解析
收藏
纠错
+ 选题
三、填空题
13.
(2022高一上·岳阳期末)
若函数
, 则
.
答案解析
收藏
纠错
+ 选题
14.
(2022高一上·岳阳期末)
计算
.
答案解析
收藏
纠错
+ 选题
15.
(2022高一上·岳阳期末)
求值:
.
答案解析
收藏
纠错
+ 选题
16.
(2022高一上·岳阳期末)
如果函数
同时满足下列两个条件:①函数图象关于直线
对称;②函数图象关于点
对称,那么我们称它为“点轴对称型函数”.请写出一个这样的“点轴对称函数”
.
答案解析
收藏
纠错
+ 选题
四、解答题
17.
(2022高一上·岳阳期末)
已知集合
, 集合
,
(1) 若
, 求
和
;
(2) 若
, 求实数
的取值范围.
答案解析
收藏
纠错
+ 选题
18.
(2022高一上·岳阳期末)
已知
,
为锐角,
,
.
(1) 求
的值;
(2) 求
的值;
(3) 求
的值.
答案解析
收藏
纠错
+ 选题
19.
(2022高一上·岳阳期末)
已知函数
.
(1) 当
时,函数
恒有意义,求实数
的取值范围;
(2) 是否存在这样的实数
, 使得函数f(x)在区间
上为减函数,并且最大值为1?如果存在,试求出
的值;如果不存在,请说明理由.
答案解析
收藏
纠错
+ 选题
20.
(2022高一上·岳阳期末)
设函数
的最小正周期为
, 其中
.
(1) 求函数
的递增区间;
(2) 求函数
在
上的值域.
答案解析
收藏
纠错
+ 选题
21.
(2022高一上·岳阳期末)
经过长期发展,我国的脱贫攻坚成功走出了一条中国特色的扶贫开发道路.某个农村地区因地制宜,致力于建设“特色生态水果基地”.经调研发现:某珍稀水果树的单株产量
(单位:千克)与施肥量
(单位:千克)满足函数关系:
,且单株水果树的肥料成本投入为
元,其它成本投入(如培育管理、施肥等人工费)为
元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求,记该水果树的单株利润为
(单位:元).
(1) 求
的函数关系式;
(2) 当单株施肥量为多少千克时,该水果树的单株利润最大?最大利润是多少?
答案解析
收藏
纠错
+ 选题
22.
(2022高一上·岳阳期末)
设函数
(
且
)是定义在
上的奇函数.
(1) 若
,求使不等式
对
恒成立的实数
的取值范围;
(2) 设函数
的图像过点
,函数
.若对于任意的
,都有
,求
的最小值.
答案解析
收藏
纠错
+ 选题
微信扫码预览、分享更方便
详情
试题分析
(总分:
0
)
总体分析
题量分析
难度分析
知识点分析
试卷信息