性别 | 锻炼情况 | 合计 | |
不经常 | 经常 | ||
女生/人 | 14 | 7 | 21 |
男生/人 | 8 | 11 | 19 |
合计/人 | 22 | 18 | 40 |
注:独立性检验中,
.
常用的小概率值和相应的临界值如下表:
0.1 | 0.05 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
根据这些数据,给出下列四个结论:
①依据频率稳定于概率的原理,可以认为性别对体育锻炼的经常性有影响;②依据频率稳定于概率的原理,可以认为性别对体育锻炼的经常性没有影响;③根据小概率值的独立性检验,可以认为性别对体育锻炼的经常性有影响,这个推断犯错误的概率不超过0.05;④根据小概率值
的独立性检验,没有充分证据推断性别对体育锻炼的经常性有影响,因此可以认为性别对体育锻炼的经常性没有影响.
其中,正确结论的序号是( )
①函数是增函数;
②函数是奇函数;
③对于任意实数a,函数至少有一个零点;
④曲线不存在与直线
垂直的切线.
其中所有正确结论的序号是.
假设同组中的每个数据用该组区间的右端点值代替.
日均收看北京冬奥会的时长/小时 | 通过方式①收看 | 通过方式②收看 |
1 | 0 | |
日均收看北京冬奥会的时长在的学生通过方式①收看的平均时长分别记为
, 写出
的大小关系.(结论不要求证明)
①求证:的最大值不小于
;
②求n的最大值.