当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市瑞安东北部(龙湾西南部)十一校2022-2023...

更新时间:2024-07-13 浏览次数:179 类型:期中考试
一、选择题(本题有10小题,每小题4分,共40分.)
二、填空题(本题有6小题,每小题5分,共30分)
三、解答题(本题有8个小题,共80分。)
  • 17. (2022九上·瑞安期中) 已知抛物线的表达式为y=x2-2x-3.
    1. (1) 求抛物线的顶点坐标.
    2. (2) 当0≤x≤3时,求y的取值范围.
  • 18. (2022九上·瑞安期中) 一个箱子里有1个红球、1个白球,它们除颜色外其余均相同.从箱子里先摸出一个球,放回去摇匀后,再摸出一个球.
    1. (1) 有人说,两次摸球只有3种可能的结果:2红、2白、1红1白,所以两次都摸到红球的概率应该是 , 这种说法正确吗?请判断并说明理由.
    2. (2) 往箱子中再放入n个红球,2个白球,它们除颜色外其余均相同,从箱子中任意摸一个球,若摸到红球的概率为0.8,求n的值.
  • 19. (2022九上·瑞安期中) 如图,在矩形ABCD中,E为AD上一点,连结AC,BE交于点F,FG⊥CD于G.

    1. (1) 求证:
    2. (2) 若AE=DE=3,求FG的长.
  • 20. (2022九上·瑞安期中) 如图,在6×8的方格纸中,点A,B,C均为格点,请按要求在方格纸内作图.

    1. (1) 在图1中作出与△ABC相似的格点△CDE.
    2. (2) 在图2中作出与∠C相等的∠AFB,点F为格点且不与点C重合.
  • 21. (2022九上·瑞安期中) 已知抛物线y=-x2+bx+c经过点A(0,1),B(4,1).
    1. (1) 求抛物线的函数表达式.
    2. (2) 点C(m,n)在抛物线上且在第一象限.设点C到AB的距离为d,若3<d≤4,求m的取值范围.
  • 22. (2022九上·瑞安期中) 如图,四边形ABCD为⊙O的内接四边形, AB为⊙O的直径,作DE⊥AB于点E,交AC于点F,其中

    1. (1) 求证:△ABC∽△DAE.
    2. (2) 当AD= , BE=4时,求CD的长.
  • 23. (2022九上·瑞安期中) 根据以下素材,探索完成任务.

    如何设计喷水池喷头的安装方案?

    素材1

    图1中有一个直径为20 m的圆形喷水池,四周安装一圈喷头,喷射水柱呈抛物线型,在水池中心O处立着一个直径为1 m的圆柱形实心石柱,各方向喷出的水柱在石柱顶部的中心点M处汇合,如图2,水柱距水池中心4 m处到达最高,高度为6 m.

    素材2

    如图3,拟在水池里过水池中心的直线上安装一排直线型喷头(喷射水柱竖直向上,高度均为m);相邻两个直线型喷头的间距均为1.2 m,且喷射的水柱不能碰到抛物线型水柱,要求在符合条件处都安装喷头,安装后关于OM成轴对称分布.

    问题解决

    任务1

    确定水柱形状

    在图2中建立合适的直角坐标系,任选一条抛物线求函数表达式.

    任务2

    确定石柱高度

    在你所建立的坐标系中,确定水柱汇合点M的纵坐标.

    任务3

    拟定设计方案

    请给出符合所有要求的直线型喷头的安装数量,并根据你所建立的直角坐标系,求出离中心O最远的两个直线型喷头的坐标.

  • 24. (2022九上·瑞安期中) 如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,点P为AC上一点,PD⊥AB于点D,连结PB,以PD为直径的圆交BP于点E,交AC于点F,连结DE,DF,EF.

    1. (1) 求证:∠DEF=∠ABC.
    2. (2) 当△DEF为等腰三角形时,求所有满足条件的AP的长.
    3. (3) 如图2,过D作DM∥EF交PB于点M,若点M为PB的中点,则DM.(直接写出答案)

微信扫码预览、分享更方便

试卷信息