当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省盐城市盐都区第一共同体2022-2023学年七年级上学...

更新时间:2024-07-13 浏览次数:77 类型:月考试卷
一、选择题(本大题共有8小题,每小题3分,共24分。)。
二、填空题(本大题共有8小题,每小题3分,共24分。)。
三、解答题(本大题共有10小题,共72分.)
    1. (1) (6a-b)+5a-2b
    2. (2) (7mn-4)-2(-mn+3
    1. (1) 2(3-x)=-4x+5
    2. (2) =+1.
  • 20. (2022七上·盐都月考) 已知A=2x2-4xy+y2 , B=4y2+4x2-6xy.
    1. (1) 当x=2,y=-1时,求B-2A的值(先化简,再求值).
    2. (2) 若|x-2a|+(y-2)2=0,且B-2A=a,求a的值.
  • 21. (2022七上·盐都月考) 已知关于 x 的方程 x-a=2 的解与方程 2(x-1)-5=3a 的解相等,求 x 的值.
  • 22. (2022七上·盐都月考) 有这样一道题:已知代数式的值为 , 求代数式的值.

    小明的解题过程如下:

    原式 , 把式子两边同乘2,得

    故原代数式的值为

    仿照小明的解题方法,解答下面的问题: 

    1. (1) 若 , 则
    2. (2) 已知 , 求的值.
  • 23. (2022七上·盐都月考) 卡塔尔世界杯正在火热进行中,在购买足球赛门票时,设购买门票张数为 a(张),现有两种购买方案:方案一:若单位赞助广告费 10000 元,则该单位购买门票的价格为60元(总费用=广告赞助费+门票费).方案二:若购买的门票数不超过 100 张,每张 100 元,若所购门票超过 100 张,则超出部分按八折计算. 解答下列问题:
    1. (1) 方案一中,用含 a 的代数式来表示总费用为.方案二中,当购买的门票数 a 不超过 100 张时,用含 x 的代数式来表示总费用为 .当所购门票数 a 超过 100 张时,用含 x 的代数式来表示总费用为
    2. (2) 甲、乙两单位分别采用方案一、方案二购买本次足球赛门票,合计 700 张,花去的总费用计 58000元,求甲、乙两单位各购买门票多少张?
  • 24. (2022七上·盐都月考) 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:

    1. (1) 小明总共剪开了条棱.(直接写出答案)
    2. (2) 现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.
    3. (3) 据小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是88cm,求这个长方体纸盒的体积.
  • 25. (2022七上·盐都月考) 如果两个方程的解相差k,k为正整数,则称解较大的方程为另一个方程的“k—后移方程”.例如:方程是方程的“2—后移方程”.
    1. (1) 若方程是方程的“a—后移方程”,则
    2. (2) 若关于x的方程是关于x的方程的“2—后移方程”,求代数式的值:
    3. (3) 当时,如果方程是方程的“3—后移方程”,求代数式的值.
  • 26. (2022七上·盐都月考) 【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a-b|,线段AB的中点表示的数为

    【问题情境】如图,数轴上点A表示的数为-2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).

    【综合运用】

    1. (1) 填空:

      ①A、B两点间的距离AB=,线段AB的中点表示的数为 

      ②用含t的代数式表示:t秒后,点P表示的数为 ;点Q表示的数为 

    2. (2) 求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;
    3. (3) 求当t为何值时,PQ=AB;
    4. (4) 若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

微信扫码预览、分享更方便

试卷信息