一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
-
-
-
4.
函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmn%3Ec%3C%2Fmn%3E%3Cmn%3Eo%3C%2Fmn%3E%3Cmn%3Es%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
在区间
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmtext%3E%CF%80%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmfrac%3E%3Cmrow%3E%3Cmtext%3E%CF%80%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3Cmo%3E%5D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的图象大致为( )
-
5.
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Etan%3C%2Fmi%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,则
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3Esin%3C%2Fmi%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Esin%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Esin%3C%2Fmi%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ecos%3C%2Fmi%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%3D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
( )
-
6.
已知
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Elog%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmn%3E5%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Elog%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmn%3E8%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,则下列判断正确的是( )
-
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
-
二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
三、填空题:本题共4小题,每小题5分,共20分
-
-
-
-
16.
(2023高一下·鹤岗开学考)
已知定义在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3ER%3C%2Fmtext%3E%3C%2Fmath%3E)
上的函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
满足:①
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;②函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
为偶函数;③当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%5D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
时,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmtable+columnalign%3D%22left%22%3E%3Cmtr+columnalign%3D%22left%22%3E%3Cmtd+columnalign%3D%22left%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%E2%89%A4%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%89%A4%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3Cmtr+columnalign%3D%22left%22%3E%3Cmtd+columnalign%3D%22left%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%89%A4%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3C%2Fmtable%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 若关于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
的不等式
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Elog%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%E2%89%A4%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的整数解有且仅有6个,则实数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmath%3E)
的取值范围是
.
四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)
-
-
-
(2)
化简求值:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmsqrt%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsqrt%3E%3Cmi%3Esin%3C%2Fmi%3E%3Cmn%3E70%3C%2Fmn%3E%3Cmo%3E%C2%B0%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Etan%3C%2Fmi%3E%3Cmn%3E70%3C%2Fmn%3E%3Cmo%3E%C2%B0%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmi%3Esin%3C%2Fmi%3E%3Cmn%3E80%3C%2Fmn%3E%3Cmo%3E%C2%B0%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
-
-
(1)
求函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的单调增区间;
-
(2)
将函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
图象上点的横坐标伸长为原来的2倍(纵坐标不变),再把所得函数图象向下平移
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsqrt%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsqrt%3E%3C%2Fmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
个单位得到函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的图象,求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的最小值及取得最小值时的x的取值集合.
-
-
-
(2)
已知当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
时,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 求实数k的取值范围.
-
-
(1)
当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmfrac%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3Cmo%3E%5D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
时,求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的值域;
-
-
-
(1)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmath%3E)
的值;
-
-
-
(1)
常数ω>0,若函数y=f(ωx)的最小正周期是π,求ω的值.
-
(2)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsqrt%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsqrt%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 且方程
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmfrac%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmfrac%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmfrac%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3Cmo%3E%5D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
上有实数解,求实数α的取值范围.