A型 |
B型 |
|
价格(万无台) |
12 |
10 |
月污水处理能力(吨月) |
200 |
160 |
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?这解决这个问题,高购买A型污水处理设备x台,所列不等式组正确的是
问题:如图,在中, , 点D在边上(不与点A,点B重合),点E在边上(不与点A,点C重合),连接 , , 与相交于点F.若 ,求证: .
学习了一元一次不等式组的解法,老师给同学们布置了一个任务,请大家探究并求出不等式 的解集.
小丽类比有理数的乘法法则,根据“同号两数相乘,积为正”可以得到:①或② , 解不等式组①得 , 解不等式组②得 , 所以原不等式解集为或 . 请你仿照上述方法,求不等式的的解集.
已知:如图, ,点A,B分别在射线OM,ON上,且满足 .
求作:线段OB上的一点C,使 的周长等于线段 的长.
以下是小宇分析和求解的过程,请补充完整:首先画草图进行分析,如图1所示,若符合题意得点C已经找到,即 得周长等于OB的长,那么由 ,可以得到 .
对于这个式子,可以考虑用截长得办法,在BC上取一点D,使得 ,那么就可以得到 .
若连接AD,由.(填推理依据).可知点C在线段AD得垂直平分线上,于是问题得解法就找到了.
请根据小宇得分析,在图2中完成作图(尺规作图,不写做法,保留作图痕迹).
在学习全等三角形的知识时,数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成的,在相对位置变化的同时,始终存在一对全等三角形.兴趣小组成员经过研讨给出定义:如果两个等腰三角形的顶角相等,且顶角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,可以形象地看作两双手,所以通常称为“手拉手模型”.如图1,与都是等腰三角形,其中 , 则 .