证明:∵∠1+∠2=180°,∠1+∠4=180°,
∴∠2=∠4(同角的补角相等).
∴AB∥ ▲ (内错角相等,两直线平行).
∴∠3=∠ADE( ).
又∵∠3=∠B(已知),
∴ ▲ =∠B(等量代换)﹒
∴DE∥BC( ).
∴∠AED=∠C(两直线平行,同位角相等).
如图1,AB∥CD,直线EG交AB于点H,交CD于点G,点F在直线AB上.直接写出∠E,∠EFH,∠EGD之间的数量关系为.
如图2,AB∥CD,直线EG交AB于点H,交CD于点G,点F在直线AB上.FT平分∠EFH,GM平分∠EGC,若∠E=40°,求∠FMG的度数.
如图3,AB∥CD,直线EG交AB于点H,交CD于点G,点P为平面内不在直线AB,CD,EG上的一点,若∠BHP=x,∠DGP=y,则∠HPG=(直接写出答案,用x,y表示).
例:已知方程2x-3=1与不等式x+3>0,当x=2时,2x-3=2×2-3=1,x+3=2+3=5>0同时成立,则称“x=2”是方程2x-3=1与不等式x+3>0的“完美解”.