当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省深圳市南山区2022-2023学年八年级下学期期末数学...

更新时间:2023-09-19 浏览次数:143 类型:期末考试
一、选择题(本部分共10小题,每小题3分,共30分,每小题给出4个选项,其中只有一个是正确的)
二、填空题(共5小题)
三、解答题(共7小题)
    1. (1) 解不等式:3-x<2x+6;
    2. (2) 解分式方程:
  • 17. (2023八下·南山期末) 解不等式组: , 并在数轴上表示出它的解集.

  • 19. (2023八下·南山期末) 如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(-2,4),B(-4,1),C(0,1).

    ⑴画出与△ABC关于x轴对称的△A1B1C1 , 并写出点C1的坐标;

    ⑵画出以C1为旋转中心,将△A1B1C1逆时针旋转90°后的△A2B2C2

    ⑶尺规作图:连接A1A2 , 在C1A2边上求作一点P,使得点P到A1A2的距离等于PC1的长(保留作图痕迹,不写作法);

    ⑷请直接写出∠C1A1P的度数为                 

  • 20. (2023八下·南山期末) 如图,在▱ABCD中,点O是对角线AC的中点.某数学学习小组要在AC上找两点E,F,使四边形BEDF为平行四边形,现总结出甲、乙两种方案如下:                                                                  

    甲方案

    乙方案

    ​分别取AO,CO的中点E,F

    ​作BE⊥AC于点E,DF⊥AC于点F

    请回答下列问题:

    1. (1) 以上方案能得到四边形BEDF为平行四边形的是      ▲             , 选择其中一种并证明,若不能,请说明理由;
    2. (2) 若EF=2AE,SAED=6,求▱ABCD的面积.
  • 21. (2023八下·南山期末) 为了方便乘客出行,深圳宝安国际机场安装了图1所示的平地电梯,如图2是其示意图,已知电梯AB的长度为200米,小刚和小明两人不乘电梯在地面匀速行走时,小刚每分钟行走的路程是小明的1.2倍,且1.5分钟后,小刚比小明多行走15米.

    1. (1) 求两人在地面上每分钟各行走多少米?
    2. (2) 若两人同时从A点出发在平地电梯上行走,电梯向前行驶的同时两人仍保持原来在地面上匀速行走的速度在电梯上行走,当小刚到达B处时,小明还剩20米才到达B处.

      ①求电梯每分钟行驶多少米?

      ②当小刚到达B处时,发现有一袋行李忘在了A处,于是马上以每分钟a米的速度从地面返回A处,拿了行李后立即乘平地电梯(同时按原来在地面上匀速行走的速度行走)去B处和小明汇合,要使小明到达B点后等待的时间不超过4分钟,求a的最小值.

  • 22. (2023八下·南山期末) [知识链接],“化归思想”是数学学习中常用的一种探究新知、解决问题的基本的数学思想方法,通过“转化、化归”通常可以实现化未知为已知,化复杂为简单,从而使问题得以解决.在探究平行四边形的性质时,学习小组利用这种思想方法,发现并证明了如下有趣结论,平行四边形两条对角线的平方和等于四边的平方和.请你根据学习小组的思路,完成下列问题:

    1. (1) [问题发现]:如图1,学习小组首先通过对特殊平行四边形——矩形(长方形)的研究发现在矩形ABCD中令AB=a,BC=b,则可求得AC2+BD2;(用a、b的式子表示)
    2. (2) [问题探究]:如图2,学习小组通过添加辅助线,尝试将平行四边形转化为矩形,继续对一般平行四边形ABCD进行研究,如图:分别过点A、D作BC边的垂线,请你按照这种思路证明AC2+BD2=2(AB2+BC2);
    3. (3) [问题拓展]:如图3,在△ABC中,AD是BC边上的中线,已知:AD=3,BC=8,(AB-AC)2=10,请你添加合适的辅助线,构造平行四边形进行转化,求AB•AC的值.

微信扫码预览、分享更方便

试卷信息