当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省济南市章丘区2022-2023学年七年级下学期期末数学...

更新时间:2024-07-14 浏览次数:41 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 19. (2023七下·章丘期末) 已知:如图,互余,于点 , 求证:.

  • 20. (2023七下·章丘期末) 如图,在正方形网格中,是格点三角形.

    1. (1) 画出 , 使得关于直线对称;
    2. (2) 请在直线上找一点 , 使点两点的距离相等;
    3. (3) 连接 , 求的面积.
  • 21. (2023七下·深圳期末) 一个不透明的口袋中装有6个红球,9个黄球,3个白球,这些球除颜色外其他均相同.从中任意摸出一个球.
    1. (1) 求摸到的球是白球的概率;
    2. (2) 小明又向这个口袋中放入了6个同样规格的球,若放入前后摸到白球的概率不变,则新放入的6个小球中有多少个白球?
  • 22. (2023七下·章丘期末) 如图所示,小安同学为电力公司设计了一个安全用电的标识,点在同一条直线上,且

    1. (1) 求证:
    2. (2) 若 , 求的度数.
  • 23. (2023七下·章丘期末) 如图,当弹簧受到重力的作用时会伸长,某学习小组用实验的方式研究了一个弹簧的长度与所挂物体重量之间的关系,并对每组数据进行了记录:                                                                                                                                                      

    物体的重量

    0

    1

    2

    3

    4

    5

    弹簧的长度

    9

    11

    13

    15

    17

    19

    1. (1) 上表所表示的变量之间的关系中,自变量是,因变量是
    2. (2) 当弹簧不悬挂重物时长度为cm,物体重量每增加 , 弹簧长度y增加cm;
    3. (3) 直接写出y与x的关系式:
    4. (4) 当所挂物重为时,弹簧的长度为cm;
    5. (5) 这根弹簧的弹性限度(即弹簧最长可以被拉长到的长度,超过这个长度,弹簧将失去弹性)为 , 则在弹性限度之内,该弹簧最多可以挂多重的物体?
  • 24. (2023七下·章丘期末) 在同一平面内,两条直线有平行和相交两种位置关系.

    1. (1) 如图所示, , 点为直线下方的一点,连接 , 线段与直线相交于点 , 试探究之间的数量关系.

      小明的解答过程如下

      解: , 理由如下:

           (已知)( )

       ( )即

                 ▲            

           中,( )

            (等量代换)

    2. (2) 如图所示, , 当点移动到之间时,中结论是否仍成立,若成立,请说明理由;若不成立,请写出之间的数量关系,并证明.

      针对这个问题,小明、小亮、小颖三位同学各自提出了自己的解题思路:

      小明:可以连接 , 利用平行线的性质和三角形内角和和定理解决问题;

      小亮:可以延长 , 交于点 ,同样利用平行线的性质和三角形内角和定理也可解决问题;

      小颖:我过点做了一条与平行的直线,也能做出来.

      请从上述三种思路中选择一种,完成解答.

    3. (3) 如图所示,相交干点 , 点内部一点,连接 , 请直接写出间的数量关系.
  • 25. (2023七下·章丘期末) 将完全平方公式:进行适当的变形,可以解决很多的数学问题.例如:若 , 求的值.

    解:因为 , 所以 , 即

    又因为 , 所以

    根据上面的解题思路与方法,解决下列问题:

    1. (1) 若 , 则
    2. (2) 拓展:若 , 试求的值.
    3. (3) 应用:如图,在长方形中, , 点E、F是BC、CD上的点,且 , 分别以FC、CE为边在长方形外侧作正方形 , 在长方形内侧作长方形 , 若长方形的面积为160,求图中阴影部分的面积和.

       

    1. (1) 如图1, , 求的长度.

    2. (2) 如图2, , 探索的数量关系,并证明.

       

    3. (3) 如图3,在中, , 则(用关于a、b的代数式表示)

微信扫码预览、分享更方便

试卷信息