当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河北省张家口市桥西区2023-2024学年九年级上学期期中数...

更新时间:2024-01-30 浏览次数:39 类型:期中考试
一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)
二、填空题(本大题共3个小题,共10分,17小题2分;18-19小题各4分,每空2分)
  • 17. 如图,已知点A(3,3),B(3,1),反比例函数 图象的一支与线段AB有交点,写出一个符合条件的k的整数值:

  • 18. (2023九上·桥西期中) 一个盒子里装有10个红球和若干个白球,这些球除颜色外其余都相同.几名同学轮流从盒子里摸1个球,记录下所摸球的颜色后,再把球放回盒子里搅匀,记录如下:

    摸球次数

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    出现红球的频数

    11

    23

    33

    38

    49

    59

    69

    81

    91

    101

    109

    121

    根据以上表格可估计摸到红球的概率为 (结果保留小数点后一位),袋中白球约有 个.

  • 19. (2023九上·桥西期中) 如图,折叠矩形ABCD的一边AD , 使D落在BC边上的F处,且

    ⑴△AFB与△FEC是否相似?(选填“是”或者“否”).

    ⑵若则矩形ABCD的面积为 cm2

三、解答题(本大题共7个小题,共52分,解答应写出文字说明、证明过程或演算步骤)
  • 21. (2023九上·桥西期中) 有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.
  • 22. (2023九上·桥西期中) 教室里的投影仪投影时,可以把投影光线CACB及在黑板上的投影图象高度AB抽象成如图所示的△ABC , ∠BAC=90°,黑板上投影图象的高度AB=120cmCBAB的夹角∠B=33.7°,求AC的长.(结果精确到1cm . 参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)

  • 23. (2023九上·广州期中) 为了便于劳动课程的开展,学校打算建一个矩形生态园(如图),生态园一面靠墙(墙足够长),另外三面用的篱笆围成.生态园的面积能否为?如果能,请求出的长;如果不能,请说明理由.

  • 24. (2023九上·桥西期中) 如图,矩形ABCD中,过对角线BD的中点OBD的垂线EF , 分别交ADBC于点EF . 判断四边形EBFD的形状,并说明理由.

  • 25. (2023九上·桥西期中) 在平面直角坐标系xOy中,抛物线yax2﹣4aa≠0)与x轴的交点为AB , (点A在点B的左侧),顶点为C
    1. (1) 求AB的长;
    2. (2) 若以ABC为顶点的三角形为直角三角形,求a的值;
    3. (3) 横、纵坐标都是整数的点叫做整点,若抛物线在点AB之间的部分与线段AB所围成的区域内(不包括边界)恰有1个整点,结合函数的图象,直接写出a的取值范围.
  • 26. (2023九上·桥西期中) 如图1,在三角形ABC中,角ACB=90度,AC=6cmBC=8cm , 动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒,连接PQ

    1. (1) 若三角形BPQ与三角形ABC相似,求t的值;
    2. (2) 直接写出三角形BPQ是等腰三角形时t的值;
    3. (3) 如图2,连接AQCP , 若AQ垂直CP , 求t的值.

微信扫码预览、分享更方便

试卷信息