当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2013年全国高考理数真题试卷(新课标Ⅱ卷)

更新时间:2021-05-20 浏览次数:462 类型:高考真卷
一、选择题:在每个小题给出的四个选项中,只有一项是符合题目要求的.
二、填空题
三、解答题:解答应写出文字说明,证明过程或演算步骤:
  • 17. (2013·新课标Ⅱ卷理) △ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
    1. (1) 求B;
    2. (2) 若b=2,求△ABC面积的最大值.
  • 18. (2013·新课标Ⅱ卷理) 如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB= AB.

    1. (1) 证明:BC1∥平面A1CD
    2. (2) 求二面角D﹣A1C﹣E的正弦值.
  • 19. (2013·新课标Ⅱ卷理) 经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

    1. (1) 将T表示为x的函数;
    2. (2) 根据直方图估计利润T不少于57000元的概率;
    3. (3) 在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.
  • 20. (2013·新课标Ⅱ卷理) 平面直角坐标系xOy中,过椭圆M: (a>b>0)右焦点的直线x+y﹣ =0交M于A,B两点,P为AB的中点,且OP的斜率为
    1. (1) 求M的方程
    2. (2) C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.
  • 21. (2013·新课标Ⅱ卷理) 已知函数f(x)=ex﹣ln(x+m)
    1. (1) 设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
    2. (2) 当m≤2时,证明f(x)>0.
  • 22. (2013·新课标Ⅱ卷理) 如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.

    1. (1) 证明:CA是△ABC外接圆的直径;
    2. (2) 若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.
  • 23. (2013·新课标Ⅱ卷理) 选修4﹣﹣4;坐标系与参数方程

    已知动点P,Q都在曲线C: 上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.

    1. (1) 求M的轨迹的参数方程
    2. (2) 将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.
  • 24. (2013·新课标Ⅱ卷理) 设a,b,c均为正数,且a+b+c=1,证明:
    1. (1)

    2. (2)

微信扫码预览、分享更方便

试卷信息