一、选择题: 本题共 8 小题, 每小题 5 分, 共 40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.
-
-
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分又不必要条件
-
A . 2
B . 3
C .
D .
-
A .
B . 3
C .
D . 6
-
-
-
7.
(2023高一上·龙泉驿月考)
为了衡量星星的明暗程度, 古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小, 星星就越亮; 星等的数值越大它的光就越暗.到了 1850 年, 由于光度计在天体光度测量的应用, 英国天文学家普森又提出了亮度的概念, 天体的明暗程度可以用星等或亮度来描述. 两颗星的星等与亮度满足
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E5%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3EE%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3EE%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
, 其中星等为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3Ek%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
的星的亮度为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3EE%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3Ek%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmtext%3Ek%3C%2Fmtext%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
. 已知“心宿二”的星等是 1, “天津四”的星等是 1.25 ,则“心宿二”的亮度大约是“天津四”的( )倍.
-
二、选择题: 本题共 4 小题, 每小题 5 分, 共 20 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 5 分, 部分选对的得 2 分, 有选错的得 0 分.
三、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分. 请将答案填写在答题卡相应位置上.
四、解答题: 本题共 6 小题, 共 70 分.解答应写出文字说明、证明过程或演算步骤.
-
-
(1)
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmsup%3E%3Cmrow%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmath%3E)
;
-
(2)
-
-
(1)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Em%3C%2Fmtext%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmath%3E)
, 求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3EA%3C%2Fmtext%3E%3Cmsup%3E%3Cmstyle+displaystyle%3D%22true%22+mathsize%3D%22140%25%22%3E%3Cmrow%3E%3Cmo%3E%E2%88%A9%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmstyle%3E%3Cmrow%3E%3Cmtext%3E%E2%80%8B%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmtext%3EB%3C%2Fmtext%3E%3C%2Fmath%3E)
;
-
(2)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3EB%3C%2Fmtext%3E%3Cmo%3E%E2%8A%86%3C%2Fmo%3E%3Cmtext%3EA%3C%2Fmtext%3E%3C%2Fmath%3E)
, 求实数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmath%3E)
的取值范围.
-
-
(1)
已知
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Et%3C%2Fmtext%3E%3Cmtext%3Ea%3C%2Fmtext%3E%3Cmtext%3En%3C%2Fmtext%3E%3Cmtext%3E%CE%B1%3C%2Fmtext%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmath%3E)
, 求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmtext%3Es%3C%2Fmtext%3E%3Cmtext%3Ei%3C%2Fmtext%3E%3Cmtext%3En%3C%2Fmtext%3E%3Cmtext%3E%CE%B1%3C%2Fmtext%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmtext%3Ec%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmtext%3Es%3C%2Fmtext%3E%3Cmtext%3E%CE%B1%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmtext%3Es%3C%2Fmtext%3E%3Cmtext%3Ei%3C%2Fmtext%3E%3Cmtext%3En%3C%2Fmtext%3E%3Cmtext%3E%CE%B1%3C%2Fmtext%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmtext%3Ec%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmtext%3Es%3C%2Fmtext%3E%3Cmtext%3E%CE%B1%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
的值.
-
-
-
(1)
求函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ef%3C%2Fmtext%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmtext%3Ex%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的解析式并判断
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ef%3C%2Fmtext%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmtext%3Ex%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的单调性;
-
-
21.
(2023高一上·龙泉驿月考)
秋冬季是流感的高发季节, 为了预防流感, 东竞高中决定对教室采用药熏消毒法进行消毒, 药熏开始前要求学生全部离开教室.已知在药熏过程中, 教室内每立方米空气中的药物含量
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ey%3C%2Fmtext%3E%3C%2Fmath%3E)
(毫克) 与药熏时间
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Et%3C%2Fmtext%3E%3C%2Fmath%3E)
(小时) 成正比: 当药熏过程结束, 药物即释放完毕, 教室内每立方米空气中的药物含量
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3E%E2%80%8B%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3Ey%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
(毫克) 达到最大值.此后, 教室内每立方米空气中的药物含量
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3E%E2%80%8B%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3Ey%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
(毫克) 与时间
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Et%3C%2Fmtext%3E%3C%2Fmath%3E)
(小时) 的函数关系式为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ey%3C%2Fmtext%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3Et%3C%2Fmtext%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmtext%3Ea%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
(
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ea%3C%2Fmtext%3E%3C%2Fmath%3E)
为常数,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Et%3C%2Fmtext%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
). 已知从药熏开始, 教室内每立方米空气中的药物含量
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ey%3C%2Fmtext%3E%3C%2Fmath%3E)
(毫克) 关于时间
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Et%3C%2Fmtext%3E%3C%2Fmath%3E)
(小时) 的变化曲线如图所示.
![](//tikupic.21cnjy.com/2024/01/04/76/d8/76d8cc269e83413dbcff61accd44bfbe_150x136.jpeg)
-
(1)
从药熏开始, 求每立方米空气中的药物含量
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ey%3C%2Fmtext%3E%3C%2Fmath%3E)
(毫克) 与时间
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Et%3C%2Fmtext%3E%3C%2Fmath%3E)
(小时) 之间的函数关系式;
-
(2)
据测定, 当空气中每立方米的药物含量不高于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
毫克时, 学生方可进入教室, 那么从药薰开始, 至少需要经过多少小时后, 学生才能回到教室.
-
-
(1)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ea%3C%2Fmtext%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
, 求不等式
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ef%3C%2Fmtext%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmtext%3Ex%3C%2Fmtext%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmtext%3Ef%3C%2Fmtext%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmtext%3Ex%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的解集;
-
(2)
已知函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Eh%3C%2Fmtext%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmtext%3Ex%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmtext%3Ef%3C%2Fmtext%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmtext%3Ex%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmtext%3Ex%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 且方程
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Eh%3C%2Fmtext%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmtext%3Ex%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
有唯一实数解, 求实数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ea%3C%2Fmtext%3E%3C%2Fmath%3E)
的取值范围.