当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖南省长沙市长沙县2023-2024学年九年级上学期数学期末...

更新时间:2024-04-17 浏览次数:19 类型:期末考试
一、选择题:本题共10小题,每小题3分,共30分。在每小题给出的选项中,只有一项是符合题目要求的。
二、填空题:本题共6小题,每小题3分,共18分。
三、解答题:本题共9小题,共72分。解答应写出文字说明,证明过程或演算步骤。
  • 17. (2024九上·长沙期末) 如图,经过某种变换得到的图形,点与点 , 点与点 , 点与点分别是对应点,观察点与点的坐标之间的关系,解答下列问题:

    1. (1) 填写完整:点与点 , 点与点 , 点与点的坐标,并说说对应点的坐标有哪些特征;
         .对应点坐标的特征:横坐标、纵坐标均
    2. (2) 若点与点也是通过上述变换得到的对应点,求的值.
  • 18. (2024九上·长沙期末)   长沙地铁的开通运营缓解了城市的交通压力,如图所示的是某站地铁闸口的示意图.

    1. (1) 一名乘客通过此地铁闸口进站时,选择闸口的概率是
    2. (2) 当两名乘客通过此地铁闸口进站时,请用树状图或列表法求两名乘客选择不同的闸口通过的概率.
  • 19. (2024九上·长沙期末) 如图,


    求证:

    1. (1)
    2. (2)
  • 20. (2024九上·长沙期末)   如图,一次函数的图象与反比例函数的图象交于第一象限两点,与坐标轴交于两点,连接是坐标原点

    1. (1) 求反比例函数的表达式及的值;
    2. (2) 根据函数图象,直接写出不等式的解集为
  • 21. (2024九上·长沙期末)   如图,在中,弦相交于点 , 连接 , 已知

    1. (1) 求证:
    2. (2) 连接 , 若的半径为 , 求的长.
  • 22. (2024九上·长沙期末)   在“校园劳动节”活动中,某劳动小组借助如图所示的直角墙角墙角两边足够长 , 用长的篱笆围成一个矩形劳动基地篱笆只围两边 , 设 , 则

    1. (1) 求之间的关系式,并写出自变量的取值范围;
    2. (2) 当矩形劳动基地的面积为时,求的长;
    3. (3) 如果在点处有一棵树不考虑粗细 , 它与墙的距离分别是 , 如果要将这棵树围在矩形劳动基地内部含边界 , 试求矩形劳动基地面积的最大值.
  • 23. (2024九上·长沙期末)   如图,的直径,上一点,的平分线交于点于点

    1. (1) 试判断的位置关系,并说明理由;
    2. (2) 过点于点 , 若 , 求图中阴影部分的面积.
  • 24. (2024九上·长沙期末)    某数学学习小组在学习了相似三角形以后,他们发现对于同一个物体在灯光下,它的影子的长度与电灯到物体的距离有一定的关系,利用物体影子的长度可以计算电灯到物体的距离,利用电灯到物体的距离也可以计算物体影子的长度下面是他们的试验内容,请解答:
    1. (1) 如图 , 放在水平地面上的正方形框架 , 在其正上方有一个小射灯 , 在小射灯的照射下,正方形框架在地面上的影子为 , 若正方形框架的边长为 , 则;小射灯离地面的距离为
    2. (2) 如图 , 不改变图框架和小射灯的位置,将另一个同样大小的小正方形框架紧贴在原小正方形框架的左边并排摆放,即正方形求小射灯下的影长的长度.
    3. (3) 如图 , 小射灯到地面的距离为 , 一共有个边长为的小正方形框架无重叠并排如图摆放,影长的和为表示
  • 25. (2024九上·长沙期末)   我们把与轴有两个不同交点的函数称为“五好函数”,交点称为“五好点”,两交点间的距离称为“五好距”.
    1. (1) 判断下列函数是“五好函数”吗?如果是,请在括号里打“”,如果不是则打“”;
           ▲  
    2. (2) 求出“五好函数”的“五好距”;
    3. (3) 已知“五好函数”左侧的“五好点”位于之间两点 , 求的取值范围;
      不论取何值,不等式恒成立,在的条件下,函数为常数的最小值为 , 求的值.

微信扫码预览、分享更方便

试卷信息