当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省深圳市南山实验教育集团麒麟中学2023-2024学年九...

更新时间:2024-05-09 浏览次数:30 类型:开学考试
一、选择题:本题共10小题,每小题3分,共30分。在每小题给出的选项中,只有一项是符合题目要求的。
二、填空题:本题共5小题,每小题3分,共15分。
三、解答题:本题共7小题,共56分。解答应写出文字说明,证明过程或演算步骤。
  • 17. (2024九下·南山开学考) 为了启发学生的阅读自觉性,培养学生的学习毅力,学校决定开展“读书月”活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成五类:艺术、文学、科普、传记、其他根据调查结果绘制了两幅不完整的统计图每位同学必选且只选最喜欢的一类 , 根据图中提供的信息,解答下列问题:

    1. (1) 这次调查的学生共有名,喜欢“文学”类的学生有名;
    2. (2) 在扇形统计图中“科普”类所对应的圆心角的度数是 , “其他”类所对应的百分比是
    3. (3) 如果要在这五类图书中任选两类进行调查,恰好选到学生最喜欢的“文学”与“科普”的两类图书的概率是
  • 18. (2024九下·南山开学考) 、图、图均是的正方形网格,每个小正方形的边长均为 , 每个小正方形的顶点称为格点均在格点上,只用无刻度的尺,分别在给定的网格中按下列要求作 , 点在格点上.

    1. (1) 在图中,的面积为
    2. (2) 在图中,的面积为
    3. (3) 在图中,是面积为的钝角三角形.
  • 19. (2024九下·南山开学考) 为研究某种化学试剂的挥发情况,某研究团队在两种不同的场景下做对比实验,收集了该试剂挥发过程中剩余质量随时间分钟变化的数据 , 并分别绘制在直角坐标系中,如图所示.

    1. (1) 从中,选择适当的函数模型分别模拟两种场景下变化的函数关系,并求出相应的函数表达式;
    2. (2) 查阅文献可知,该化学试剂发挥作用的最低质量为在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?
  • 20. (2024九下·南山开学考) 学科综合

    我们在物理学科中学过:光线从空气射入水中会发生折射现象如图 , 我们把称为折射率其中代表入射角,代表折射角

    观察实验

    为了观察光线的折射现象,设计了图所示的实验,即通过细管可以看见水底的物块 , 但不在细管所在直线上,图是实验的示意图,四边形为矩形,点在同一直线上,测得

    1. (1) 求入射角的度数.
    2. (2) 若 , 求光线从空气射入水中的折射率参考数据:
  • 21. (2024九下·南山开学考) 综合与实践

    车轮设计成圆形的数学道理

    小青发现路上行驶的各种车辆,车轮都是圆形的为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:

    将车轮设计成不同的正多边形,在水平地面上模拟行驶.

    1. (1) 探究一:将车轮设计成等边三角形,转动过程如图 , 设其中心到顶点的距离是 , 以车轮转动一次以一个顶点为支点旋转为例,中心的轨迹是 , 圆心角此时中心轨迹最高点是的中点 , 转动一次前后中心的连线是水平线 , 请在图中计算的距离
    2. (2) 探究二:将车轮设计成正方形,转动过程如图 , 设其中心到顶点的距离是 , 以车轮转动一次以一个顶点为支点旋转为例,中心的轨迹是 , 圆心角此时中心轨迹最高点是的中点 , 转动一次前后中心的连线是水平线 , 请在图中计算的距离结果保留根号
    3. (3) 探究三:将车轮设计成正六边形,转动过程如图 , 设其中心到顶点的距离是 , 以车轮转动一次以一个顶点为支点旋转为例,中心的轨迹是 , 圆心角.此时中心轨迹最高点是的中点 , 转动一次前后中心的连线是水平线 , 在图中计算的距离结果保留根号
    4. (4) 归纳推理:比较大小:,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线水平线的距离填“越大”或“越小”
    5. (5) 得出结论:将车轮设计成圆形,转动过程如图 , 其中心即圆心的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线水平线的距离这样车辆行驶平稳、没有颠簸感所以,将车轮设计成圆形.
  • 22. (2024九下·南山开学考) 本小题

    探究函数的图象和性质,探究过程如下:

    1. (1) 自变量的取值范围是全体实数,的几组对应值列表如下:





























      其中,根据如表数据,在图所示的平面直角坐标系中,通过描点画出了函数图象的一部分,请画出该函数图象的另一部分观察图象,写出该函数的一条性质;

    2. (2) 点是函数图象上的一动点,点 , 点 , 当时,请直接写出所有满足条件的点的坐标;
    3. (3) 在图中,当在一切实数范围内时,抛物线轴于两点在点的左边 , 点是点关于抛物线顶点的对称点,不平行轴的直线分别交线段不含端点两点当直线与抛物线只有一个公共点时,的和是否为定值?若是,求出此定值;若不是,请说明理由.

微信扫码预览、分享更方便

试卷信息