当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广西壮族自治区钦州市浦北县2023-2024学年高二下学期数...

更新时间:2024-06-03 浏览次数:8 类型:期中考试
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)
三、填空题(本题共3小题,每小题5分,共15分.把正确答案填在答题卡的相应位置.)
四、解答题(本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.)
  • 15. (2024高二下·浦北期中) 已知5名同学站成一排,要求甲站在正中间,乙不站在两端,记满足条件的所有不同的排法种数为m.
    1. (1) 求m的值;
    2. (2) 求二项式的展开式中的常数项.
  • 16. (2024高二下·浦北期中) 某产品的广告费用支出(单位:万元)与销售额(单位:万元)的数据如下表.

    (参考公式:线性回归方程中的系数

    广告费用支出

    3

    5

    6

    7

    9

    销售额

    20

    40

    60

    50

    80

    1. (1) 在给出的坐标系中画出散点图;
    2. (2) 建立销售额关于广告费用支出的一元线性回归模型;
    3. (3) 利用所建立的模型,预测当广告费用支出为12万元时,销售额为多少.
  • 17. (2024高二下·浦北期中) 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
    1. (1) 求甲学校获得冠军的概率;
    2. (2) 用X表示乙学校的总得分,求X的分布列与期望.
  • 18. (2024高二下·浦北期中) 新高考改革后部分省份采用“”高考模式,“3”指的是语文、数学、外语三门为必选科目,“1”指的是要在物理、历史里选一门,“2”指考生要在生物、化学、思想政治、地理4门中选择2门.

    附:.

    1. (1) 若按照“”模式选科,求甲、乙两名学生恰有四门学科相同的选法种数;
    2. (2) 某教育部门为了调查学生语数外三科成绩,从当地不同的学校中抽取高一学生4000名参加语数外的网络测试(满分450分),假设该次网络测试成绩服从正态分布.

      ①估计4000名学生中成绩介于190分到355分之间的有多少人(结果保留到个位);

      ②该地某校对外宣传“我校200人参与此次网络测试,有12名同学获得425分以上的高分”,请结合统计学知识分析上述宣传语是否可信.

  • 19. (2024高二下·浦北期中) 某商场举办摸球赢购物券活动.现有完全相同的甲、乙两个小盒,每盒中有除颜色外形状和大小完全相同的10个小球,其中甲盒中有8个黑球和2个白球,乙盒中有3个黑球和7个白球.参加活动者首次摸球,可从这两个盒子中随机选择一个盒子,再从选中的盒子中随机摸出一个球,若摸出黑球,则结束摸球,得300元购物券;若摸出的是白球,则将摸出的白球放回原来盒子中,再进行第二次摸球,第二次摸球有如下两种方案:方案一,从原来盒子中随机摸出一个球;方案二,从另外一个盒子中随机摸出一个球,若第二次摸出黑球,则结束摸球,得200元购物券;若摸出的是白球,也结束摸球,得100元购物券.用X表示一位参加活动者所得购物券的金额.
    1. (1) 在第一次摸出白球的条件下,求选中的盒子为甲盒的概率.
    2. (2) ①在第一次摸出白球的条件下,通过计算,说明选择哪个方案第二次摸到黑球的概率更大;

      ②依据以上分析,求随机变量X的数学期望的最大值.

微信扫码预览、分享更方便

试卷信息