当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

贵州省遵义市2024年初中数学学业水平考试第二次模拟试卷

更新时间:2024-06-23 浏览次数:50 类型:中考模拟
一、选择题(每小题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确)
二、填空题 (每小题4分,共16分)
三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)
    1. (1)  计算: 
    2. (2) 从整式 x-3, 2x+6, -x+9 中选取两个式子, 用“>”连接组成一个一元一次不等式,并解该不等式.
  • 18. (2024·遵义会模拟)  已知 

    先在A,B,C中任选2个分式用乘号“×”连接并进行化简,再从0,1,2中选择一个合适的数作为x的值代入求值.

  • 19. (2024·遵义会模拟) 某区响应国家的号召,鼓励学生利用周末时间开展群文阅读.该区为了了解学生阅读情况,随机抽取七八九年级200名学生调查每周用于阅读的时间:

    【设计方案】

    方案

    调查方式

    方案①

    在指定学校中随机抽取 200 名学生进行调查分析

    方案②

    在全区七八九年级中随机抽取 200名学生进行调查分析

    方案③

    在八年级男生中随机抽取200名学生进行调查分析

    【数据分析】将抽取的200名学生每周用于课外阅读的时间x(单位:分钟)的数据,划分为四个等级: A(30<x≤60), B(60<x≤90), C(90<x≤120), D(120<x≤150), 并绘制成如下不完整的统计图.

    请根据以上信息,回答下列问题:

    1. (1)  三个方案中具有代表性的方案是(填“①”或“②”或“③”) ;
    2. (2) 请补全条形统计图;
    3. (3) 在全区抽取的D等级样本中,某校有3名学生被抽中,其中2名男生和1名女生.该校计划从这3名同学中,随机抽取2名学生进行读书分享,请用画树状图或列表法,求恰好选中1名男生和1名女生的概率.
  • 20. (2024·遵义会模拟) 如图,佳佳将两个全等的直角三角板(含30°)的直角边重合拼成如图①,图②的四边形ABCD.

    1. (1)  判断四边形ABCD 的形状为
    2. (2) 连接AC,若直角三角板斜边的长为12,请从图①,图②中选择一个图形,求对角线AC的长度.
  • 21. (2024·遵义会模拟) 贵州出产的茶叶品种众多,畅销各地,茶产业是农民增加收入的一种重要途径.某县重点推出了A,B两种品牌茶叶,已知某商店购买1盒A茶叶和1盒B茶叶共用540元,购买2盒A茶叶和3盒B茶叶共用1340元.
    1. (1) 购买A,B两种茶叶的单价各是多少元?
    2. (2)  该店计划用不超过27800元购买A,B两种茶叶共100盒,且A的数量不低于 B数量的  , 若两种茶叶的售价均为每盒350元,该店如何安排进货,使销售完两种茶叶获得利润最大,并求这个最大利润.
  • 22. (2024·遵义会模拟) 2024年春节期间,遵义部分县区举办“新春灯会·喜迎龙年”活动,引进了现代光电技术,让古老的彩灯艺术焕发出青春的熠熠光芒.如图是某地灯会现场部分示意图,AB为主灯塔,BC为汇展舞台,CD⊥BC于点C,一束灯光的光线从主灯塔A处发出,经过平面镜 D 处,反射到达舞台中央E 处(MN为法线).测得水平方向 CE=BE=4m,∠CED=42°. (参考数据: sin42°≈0.66, cos42°≈0.74, 结果保留一位小数)

    1. (1)  求 CD的高度;
    2. (2)  求主灯塔AB的高度.
  • 23. (2024·遵义会模拟) 如图, AB 是⊙O的直径, 点E在弧BD上, 连接AE 并延长, 交⊙O的切线BC于点 C, 连接BD, 交AE于点 F.

    1. (1)  写出图中一对与∠CAB 相等的角
    2. (2)  判断∠EDB 与∠CBE的数量关系, 并说明理由;
    3. (3)  若  求⊙O的半径.
  • 24. (2024·遵义会模拟) 规定[n, n-3, --3](n为正整数)为二次函数 的“函系数”,

    如: 当n=1时,  的“函系数”为[1, --2, --3];

     当n = 2 时,  的“函系数”为[2, --1, --3];

    设二次函数yn与x轴的交点分别为An,Bn(点An在Bn的左边) .

    1. (1) 当n=5时,对应的二次函数的解析式为
    2. (2)  求点An, Bn的坐标(用含 n的式子表示) .
    3. (3) 当n≥4时,二次函数 与直线y=-3的一个交点为( (点Cn不在y轴上).判断线段 和线段( 的数量关系,并说明理由.
  • 25. (2024·遵义会模拟) 如图①,在正方形ABCD 中,点E是AB边上一动点,将正方形沿DE折叠,点A落在正方形内部的点F处,连接AF 并延长,交 BC于点 G.

    1. (1)  判断AE 与 BG 的数量关系为
    2. (2)  【应用】如图①, 延长DF交BC于点 H.

      ①证明: ∠HFG=∠FGH;

      ②若HB=3a, HF=5a, AE=8, 求BE的长度;

    3. (3)  【拓展】如图②,将正方形改成矩形, 其中AD=2CD, 将矩形沿DE折叠, 使点A落在点F 处(矩形内部),连接AF 并延长,交 BC于点G,延长DF交直线BC于点H. 若HB=3a, HF=5a, 直接写出 的值.

微信扫码预览、分享更方便

试卷信息