一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
1.
(2024高二下·荣昌期中)
某学校开设5门球类运动课程、6门田径类运动课程和3门水上运动课程供学生学习,某位学生任选1门课程学习,则不同的选法共有( )
A . 90种
B . 30种
C . 14种
D . 11种
-
A . 512
B .
C . 2
D .
-
-
-
5.
(2024高二下·荣昌期中)
某位同学家中常备三种感冒药,分别为金花清感颗粒3盒、莲花清瘟胶囊2盒、清开灵颗粒5盒.若这三类药物能治愈感冒的概率分别为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E5%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
, 他感冒时,随机从这几盒药物里选择一盒服用,则感冒被治愈的概率为( )
-
A . -3
B . -5
C . -37
D . -39
-
7.
(2024高二下·荣昌期中)
质数(
prime number)又称素数,一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,则这个数为质数,数学上把相差为2的两个素数叫做“孪生素数”.如:3和5,5和
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E7%3C%2Fmn%3E%3Cmtext%3E%E2%8B%AF%3C%2Fmtext%3E%3Cmtext%3E%E2%8B%AF%3C%2Fmtext%3E%3C%2Fmath%3E)
, 在1900年的国际数学大会上,著名数学家希尔伯特提出了23个问题,其中第8个就是大名鼎鼎的孪生素数猜想:即存在无穷多对孪生素数.我国著名数学家张益唐2013年在《数学年刊》上发表论文《素数间的有界距离》,破解了困扰数学界长达一个半世纪的难题,证明了孪生素数猜想的弱化形式.那么,如果我们在不超过30的自然数中,随机选取两个不同的数,记事件
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3C%2Fmath%3E)
“这两个数都是素数”;事件
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3C%2Fmath%3E)
“这两个数不是孪生素数”,则
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmtext%3E%E2%88%A3%3C%2Fmtext%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3C%2Fmath%3E)
( )
-
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
三、填空题:本题共3小题,每小题5分,共15分.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
-
-
(1)
求函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
的图象在点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
处的切线方程;
-
(2)
求函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
的单调区间.
-
-
-
(2)
若第
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmath%3E)
项是有理项,求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmath%3E)
的取值集合.
-
-
-
(1)
证明:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmn%3E%2F%3C%2Fmn%3E%3Cmn%3E%2F%3C%2Fmn%3E%3C%2Fmath%3E)
平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
.
-
-
-
(1)
求椭圆
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的标准方程;
-
(2)
设坐标原点为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EO%3C%2Fmi%3E%3C%2Fmath%3E)
, 若不经过点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
的直线与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
相交于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EM%3C%2Fmi%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmath%3E)
两点,直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmath%3E)
的斜率互为相反数,当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EM%3C%2Fmi%3E%3Cmi%3EO%3C%2Fmi%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmath%3E)
的面积最大时,求直线
MN的方程.
-
19.
(2024高二下·荣昌期中)
英国数学家泰勒发现了如下公式:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3Ee%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E%21%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmn%3E%21%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmtext%3E%E2%8B%AF%3C%2Fmtext%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmn%3E%21%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmtext%3E%E2%8B%AF%3C%2Fmtext%3E%3C%2Fmath%3E)
其中
为自然对数的底数,
.以上公式称为泰勒公式.设
, 根据以上信息,并结合高中所学的数学知识,解决如下问题.
-
(1)
证明:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3Ee%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmtext%3E%E2%A9%BE%3C%2Fmtext%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
;
-
(2)
设
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmtext%3E%E2%88%9E%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 证明:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
-
(3)
设
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的极小值点,求实数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmath%3E)
的取值范围.