已知: , 且 . 求证: 证明: 又 , ∴ (◎)
|
(1)点的坐标是.
(2)若坐标原点为点 , 将两个函数图象向右平移个单位,点平移后分别对应点 , 连接 , 当最大时,的值为.
项目 | 内容 |
材料一 | “沁园包子”店铺开张,经营早餐销售,有菜包、肉包、豆浆等类型早餐,客户可自行搭配.菜包2元/个,豆浆2元/碗,肉包的总金额y(单位:元)随购买个数x(单位:个)之间的关系如图所示,坐标 , 均经过该分段函数.
|
材料二 | 经过试销,“沁园包子”店铺推出套餐A和套餐B,如下:
套餐A:2菜包+1肉包+1豆浆,6元 套餐B:1菜包+1肉包+2豆浆,7元 现在某顾客有资金30元,想购买任意种类包子6个,豆浆2碗. |
材料三 | 为了吸引顾客,扩大市场,“沁园包子”店铺决定开办线上外卖(运费在3km以内4元,超过3km后每1km收费1元),并对包子和豆浆进行优惠,具体方案如下: 方案一:全场九折(不包括运费) 方案二:①每买5个肉包赠送2个菜包 ②每买3个菜包赠送1碗豆浆 方案三:每购买材料二中的套餐任意2份,赠送肉包2个 |
任务一 | 求购买肉包的总价y(单位:元)与购买肉包个数x(单位:个)之间的函数关系式,并写明自变量的取值范围. |
任务二 | 在材料二中,若该顾客想要在一定资金内买到心仪的早餐,求他最多能买肉包的个数、菜包的个数以及豆浆的碗数. |
任务三 | 家住距离早餐店14km的某客户想要在“沁园包子”店铺购买早餐,该客户用预算100元的资金购买早餐,计划购买肉包不少于20个,菜包不多于20个,用买包子剩下的钱买豆浆.若该客户想用材料三中的一种方案购买早餐,在买包子的钱最少的前提下,求他所能买的最多的豆浆碗数,并列举此时该客户的购买方案. |
【初步探究】
(1)已知在原平面直角坐标系中有一点 , 将轴绕原点顺时针旋转轴绕点顺时针旋转得到“动感坐标系”.则点的动感坐标为______.
(2)在原平面直角坐标系中,设有一点 , 将轴绕原点逆时针旋转得到轴,轴绕原点顺时针旋转得到轴.在轴上有一点 , 在轴上有一点与在同一条水平线上.当点到点之间的距离最小时,求点的动感坐标.
【类比猜想】
根据“初步探究”中的内容,请归纳一条关于“动感坐标系”的性质.
【深入探索】
在平面直角坐标系中,已知直线与直线相交于点 , 与轴分别交于 , 且两条直线关于轴成轴对称.设三角平分线与对边的交点为 . 将轴绕点逆时针旋转 , 得到轴,轴绕原点逆时针旋转后刚好经过点 . 求点的动感坐标以及的值(点不与原点重合).