一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
-
-
-
-
5.
(2024高二下·江阳期末)
甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
小区的概率为( )
-
-
7.
(2024高三下·吉首模拟)
如图,一个棱长1分米的正方体形封闭容器中盛有V升的水,若将该容器任意放置均不能使水平面呈三角形,则V的取值范围是( )
![](//tikupic.21cnjy.com/2023/03/09/bc/d9/bcd99752da2c5c679bf3bc669d7c84dc_219x178.png)
-
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
-
A .
B .
的一个周期是4
C .
是偶函数
D .
-
A . 平面
平面
B .
平面
C . 异面直线
与
所成角的取值范围是
D . 三棱锥
的体积不变
-
三、填空题:本题共3小题,每小题5分,共15分.
-
-
-
14.
(2024高三下·吉首模拟)
在同一平面直角坐标系中,
P ,
Q分别是函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3Ee%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3El%3C%2Fmn%3E%3Cmn%3En%3C%2Fmn%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
和
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3El%3C%2Fmn%3E%3Cmn%3En%3C%2Fmn%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
图象上的动点,若对任意
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
, 有
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EQ%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%E2%89%A5%3C%2Fmo%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmath%3E)
恒成立,则实数
m的最大值为
.
四、解答题:本题共5小题,第15小题13分,第16、17小题15分,第18、19小题17分,共77分.解答应写出文字说明、证明过程或演算步骤.
-
-
-
(2)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
, 求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的周长的取值范围.
-
16.
(2024高三下·吉首模拟)
为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
对乙队的每名队员的胜率均为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
, 甲队其余4名队员对乙队每名队员的胜率均为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
.(注:比赛结果没有平局)
-
(1)
求甲队明星队员
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;
-
(2)
求甲乙两队比赛3局,甲队获得最终胜利的概率;
-
(3)
若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
上场的概率.
-
-
(1)
求数列
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的通项;
-
(2)
设数列
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
满足
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E%2A%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
, 记
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的前
n项和为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3ET%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
, 若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3ET%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%E2%89%A4%3C%2Fmo%3E%3Cmtext%3E%CE%BB%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
对任意
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3En%3C%2Fmi%3E%3Cmtext%3E%E2%88%88%3C%2Fmtext%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3EN%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E%E2%88%97%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
恒成立,求实数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%CE%BB%3C%2Fmtext%3E%3C%2Fmath%3E)
的取值范围.
-
18.
(2024高三下·吉首模拟)
如图,已知三棱柱ABC-A
1B
1C
1的底面是正三角形,侧面BB
1C
1C是矩形,M,N分别为BC,B
1C
1的中点,P为AM上一点,过B
1C
1和P的平面交AB于E,交AC于F.
-
(1)
证明:AA1∥MN,且平面A1AMN⊥EB1C1F;
-
(2)
设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.
-
-
(1)
求双曲线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的方程;
-
(2)
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
、
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmath%3E)
是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
右支上的两动点,设直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
、
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmath%3E)
的斜率分别为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
、
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
, 若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
, 求点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
到直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EM%3C%2Fmi%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmath%3E)
的距离
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ed%3C%2Fmi%3E%3C%2Fmath%3E)
的取值范围.