笔试 | 面试 | 实际操作 |
|
|
|
金额/元 | 5 | 10 | 20 | 50 | 100 |
人数 | 6 | 17 | 14 | 8 | 5 |
则他们捐款金额的众数和中位数分别是( )
画法 | 图形 |
1.以A为端点画一条射线; 2.用圆规在射线上依次截取3条等长线段AC、CD、DE,连接BE; 3.过点C、D分别画BE的平行线,交线段AB于点M、N,M、N就是线段AB的三等分点. |
|
这一画图过程体现的数学依据是( )
a.16名学生的身高:
161,162,162,164,165,165,165,166,
166,167,168,168,170,172,172,175
b.16名学生的身高的平均数、中位数、众数:
平均数 |
中位数 |
众数 |
166.75 |
m |
n |
甲组学生的身高 | 162 | 165 | 165 | 166 | 166 |
乙组学生的身高 | 161 | 162 | 164 | 165 | 175 |
影片《万里归途》的部分统计数据
发布日期 | 10月8日 | 10月11日 | 10月12日 |
发布次数 | 第1次 | 第2次 | 第3次 |
票房 | 10亿元 | 12.1亿元 |
【问题发现】(1)如图①,在等边三角形ABC中,点M是BC边上任意一点,连接AM,以AM为边作等边三角形AMN,连接CN,则∠ABC和∠ACN的数量关系为 ;
【变式探究】(2)如图②,在等腰三角形ABC中,AB=BC,点M是BC边上任意一点(不含端点B,C,连接AM,以AM为边作等腰三角形AMN,使∠AMN=∠ABC,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
【解决问题】(3)如图③,在正方形ADBC中,点M为BC边上一点,以AM为边作正方形AMEF,点N为正方形AMEF的中心,连接CN,AB,AE,若正方形ADBC的边长为8,CN= , 直接写出正方形AMEF的边长.