当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省黄石市阳新县2023-2024学年九年级上学期期中数学...

更新时间:2024-12-02 浏览次数:6 类型:期中考试
一、选择题(本大题共10小题,共30分.在每小题列出的选项中,选出符合题目的一项)
二、填空题(本大题共6小题,共18分)
三、解答题(本大题共8小题,共72分,解答应写出文字说明,证明过程或演算步骤)
  • 17. (2023九上·阳新期中) 按要求解方程:       

    (1)x2﹣x﹣2=0(公式法);       

    (2)2x2+2x﹣1=0(配方法).

  • 18. (2023九上·阳新期中) 某商场一种商品的进价为每件元,售价为每件每天可销售件,为尽快减少库存,商场决定降价促销.
    1. (1) 若该商品连续两次下调相同的百分率后售价降至每件元,求每次降价的百分率;
    2. (2) 经调查,若该商品每降价元,每天可多销售若每天要想获得元的利润且尽快减少库存,每件应降价多少元?
  • 19. (2023九上·阳新期中) 如图,点E为正方形外一点, , 将绕A点逆时针方向旋转得到的延长线交于H点.

    (1)试判定四边形的形状,并说明理由;

    (2)已知 , 求的长.

  • 20. 如图,是⊙O的直径,是⊙O的一条弦,且于点E.

    1. (1) 求证:
    2. (2) 若 , 求⊙O的半径.
  • 21. (2023九上·阳新期中) 的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为 . 仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:

       

    (1)将线段绕点逆时针旋转 , 画出对应线段

    (2)在线段上画点 , 使(保留画图过程的痕迹);

    (3)连接 , 画点关于直线的对称点 , 并简要说明画法.

  • 22. (2024九下·大庆模拟) 某区某水产养殖户利用温棚养殖技术养殖白虾,与传统养殖相比,可延迟养殖周期,并从原来的每年养殖两季提高至每年三季.已知每千克白虾的养殖成本为8元,在某上市周期的70天里,销售单价P(元/千克)与时间第t(天)之间的函数关系如下:(t都为整数),日销售量y(千克)与时间第t(天)之间的函数关系如图所示.

    1. (1) 求日销售量y与时间t的函数关系式;
    2. (2) 求第几天的日销售利润最大?最大利润是多少元?
    3. (3) 在实际销售的前40天中,该养殖户决定每销售1千克白虾,就捐赠元给公益事业.在这前40天中,已知每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.
  • 23. (2023九上·阳新期中) 如图 , 已知是等边三角形,点为射线上任意一点与点不重合 , 连结 , 将线段绕点顺时针旋转得到线段 , 连结并延长交直线于点

    (1)如图 , 猜想______

    (2)如图 , 若当是锐角或钝角时,其它条件不变,猜想的度数,选取一种情况加以证明.

    (3)如图 , 若 , 且 , 则______请直接写出结果

  • 24. (2023九上·阳新期中) 如图,抛物线两点.

           

    (1)求该抛物线的解析式;

    (2)点P是抛物线上一点,且位于第一象限,当的面积为3时,求出点P的坐标;

    (3)过B作于C,连接OB,点G是抛物线上一点,当时,请直接写出此时点G的坐标.

微信扫码预览、分享更方便

试卷信息