当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省泰州市靖江市2016届九年级上学期数学期末考试试卷

更新时间:2018-01-02 浏览次数:402 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 17. (2016九上·靖江期末) 计算题           
    1. (1) 计算:|﹣3|+
    2. (2) 化简:
  • 19. (2016九上·靖江期末) 甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.
    1. (1) 用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;
    2. (2) 小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?
  • 20. (2016九上·靖江期末) 为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:


    1. (1) 在这次调查中共调查了多少名学生?
    2. (2) 求户外活动时间为1.5小时的人数,并补充频数分布直方图;
    3. (3) 求表示户外活动时间1小时的扇形圆心角的度数;
    4. (4) 本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?
  • 21. (2022八下·敦化期末) 如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4 米.


    1. (1) 求新传送带AC的长度.
    2. (2) 如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点5米的货物MNQP是否需要挪走,并说明理由.

      参考数据:

  • 22. (2016九上·靖江期末) 如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.

    1. (1) 求证:直线BD与⊙O相切;
    2. (2) 若AD:AE=4:5,BC=6,求⊙O的直径.
  • 23. (2016九上·靖江期末) 2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.


    1. (1) 分别求y1和y2的函数解析式;
    2. (2) 有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.
  • 24. (2016九上·靖江期末) 如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连结OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.

    1. (1) 求线段OA所在直线的函数解析式;
    2. (2) 设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的表达式;
    3. (3) 当线段PB最短时,二次函数的图象是否过点Q(a,a﹣1),并说理由.
  • 25. (2016九上·靖江期末) 如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.

    1. (1) 求证:DM=DA;
    2. (2) 如图②,点G在BE上,且∠BDG=∠C.求证:△DEG∽△ECF;
    3. (3) 在(2)的条件下,已知EF=2,CE=3,求GE的长.
  • 26. (2016九上·靖江期末) 平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(a ,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k关联点”.

    1. (1) 求点P(﹣2,3)的“2关联点”P′的坐标;
    2. (2) 若a、b为正整数,点P的“k关联点”P′的坐标为(3,6),求出k及点P的坐标;
    3. (3) 如图,点Q的坐标为(0,4 ),点A在函数y=﹣ (x<0)的图象上运动,且点A是点B的“﹣ 关联点”,当线段BQ最短时,求B点坐标.

微信扫码预览、分享更方便

试卷信息