①由样本数据得到的回归方程 必过样本点的中心( , );
②用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好;
③若线性回归方程为 =3﹣2.5x,则变量x每增加1个单位时,y平均减少2.5个单位;
④在残差图中,残差点分布的带状区域的宽度越窄,残差平方和越小.
上述四个命题中,正确命题的个数为( )
在“莱布尼茨三角形”中,第10行从左到右第2个数到第8个数中各数的倒数之和为( )
x | 9 | 9.5 | 10 | 10.5 | 11 |
y | 11 | 10 | 8 | 6 | m |
由表中数据,求得y关于x的线性回归方程为 =﹣3.2x+40,则表中的实数m=.
等级 | 优秀 | 合格 | 不合格 |
男生(人) | 30 | x | 8 |
女生(人) | 30 | 6 | y |
根据表中统计的数据填写下面2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(i)求所选4人中恰有3人综合素质评价为“优秀”的概率;
(ii)记X表示这4人中综合素质评价等级为“优秀”的人数,求X的数学期望.
附:参考数据与公式
参考公式:K2= ,其中n=a+b+c+d.
前8小时的销售量t(单位:件) | 5 | 6 | 7 |
频 数 | 40 | 35 | 25 |