如图,在△ABC中,AB=4,AC=6,BC=7,过点A作直线BC的垂线,垂足为D,求线段AD的长.
解:设BD=x,则CD=7﹣x.
∵AD⊥BC,
∴∠ADB=∠ADC=90°.
在Rt△ABD中,AD2=AB2﹣BD2 ,
在Rt△ACD中,AD2=AC2﹣CD2 ,
∴AB2﹣BD2=AC2﹣CD2.
又∵AB=4,AC=6,
∴42﹣x2=62﹣(7﹣x)2.
解得x= ,
∴BD= .
∴AD= = .
[知识迁移]
i)如图1,若BC=14,求线段AD的长;
ii)若AD=12,求线段BC的长.
微信扫码预览、分享更方便