当前位置: 初中数学 / 单选题
  • 1. (2021八上·于洪期末) 定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.

    证法1:如图,

    ∵∠A=70°,∠B=63°,

    且∠ACD=133°(量角器测量所得)

    又∵133°=70°+63°(计算所得)

    ∴∠ACD=∠A+∠B(等量代换).

    证法2:如图,

    ∵∠A+∠B+∠ACB=180°(三角形内角和定理),

    又∵∠ACD+∠ACB=180°(平角定义),

    ∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).

    ∴∠ACD=∠A+∠B(等式性质).

    下列说法正确的是(   )

    A . 证法1用特殊到一般法证明了该定理 B . 证法1只要测量够100个三角形进行验证,就能证明该定理 C . 证法2还需证明其他形状的三角形,该定理的证明才完整 D . 证法2用严谨的推理证明了该定理

微信扫码预览、分享更方便