当前位置: 初中数学 / 阅读理解
  • 1. (2022·永州) 已知关于的函数.

    1. (1) 若 , 函数的图象经过点和点 , 求该函数的表达式和最小值;
    2. (2) 若时,函数的图象与轴有交点,求的取值范围.
    3. (3) 阅读下面材料:

      , 函数图象与轴有两个不同的交点 , 若两点均在原点左侧,探究系数应满足的条件,根据函数图象,思考以下三个方面:

      ①因为函数的图象与轴有两个不同的交点,所以

      ②因为两点在原点左侧,所以对应图象上的点在轴上方,即

      ③上述两个条件还不能确保两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需.

      综上所述,系数应满足的条件可归纳为:

      请根据上面阅读材料,类比解决下面问题:

      若函数的图象在直线的右侧与轴有且只有一个交点,求的取值范围.

微信扫码预览、分享更方便