当前位置: 初中数学 / 实践探究题
  • 1. (2022八下·深圳期末) 【问题背景】

    某“数学学习兴趣小组”在学习了“等腰三角形的性质”和“平行四边形的性质和判定”后,在习题中发现了这样一个问题:如图1,在等腰中, , 点D、E分别是边上的点,点P是底边上的点,且 , 过点B作于点F,请写出线段之间满足的数量关系式.

    同学们经过交流讨论,得到了如下两种解决思路:

    解决思路1:如图2,过点P作于点G;

    解决思路2:如图3,过点B作 , 交的延长线于点H;

    1. (1) 上述两种解决思路都可以证明一组三角形全等,判定一个四边形为平行四边形,从而可证得线段之间满足的数量关系式为
    2. (2) 【类比探究】

      如图4,在等腰中, , 点D、E分别是边上的点,点P是底边上的点,且 , 过点B作于点F,请写出线段之间满足的数量关系式,并说明理由.

    3. (3)  【拓展应用】

      如图5,在中, , 点A、B、P在同一条直线上,若 , 则

微信扫码预览、分享更方便