当前位置: 初中数学 / 实践探究题
  • 1. (2023八上·江城期中) [问题情境]

    在综合实践课上,老师组织班上的同学开展了探究两角之间数量关系的数学活动,如题24图,已知射线AM∥BN,连接AB,点P是射线AM上的一个动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,且分别交射线AM于点C,D.

    [探索发现]

    1. (1) 当∠A=60°时,求证:∠CBD=∠A.
    2. (2) ”快乐小组”经过探索后发现:不断改变∠A的度数,∠CBD与∠A始终存在某种数量关系.

      ①当∠A=40°时,∠CBD=度;

      ②当∠A=x°时,∠CBD=度(用含x的代数式表示).

    3. (3) [操作探究]

      ”智慧小组”利用量角器量出∠APB和∠ADB的度数后,探究二者之间的数量关系.他们惊奇地发现,当点P在射线AM上运动时,无论点P在AM上的什么位置,∠APB与∠ADB之间的数量关系都保持不变.请写出它们的关系,并说明理由.

微信扫码预览、分享更方便