当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

辽宁省大石桥市水源镇九年一贯制学校2017-2018学年九年...

更新时间:2024-07-13 浏览次数:329 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 19. (2022九上·灞桥开学考) 用适当的方法解下列方程。
    1. (1) 3x(x+3)=2(x+3)
    2. (2) 2x2−4x−3=0.
  • 20. (2018九上·大石桥期末) 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).

    1. (1) 将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A1B1C1
    2. (2) 求出点B旋转到点B1所经过的路径长.
  • 21. (2018九上·大石桥期末) 在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同。甲、乙、两同学玩摸球游戏,游戏规则如下:

    先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号。将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数。若该两位数能被4整除,则甲胜,否则乙胜.

    问:这个游戏公平吗?请说明理由。

  • 22. (2018九上·大石桥期末) 现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
    1. (1) 求该快递公司投递总件数的月平均增长率;
    2. (2) 如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
  • 23. (2018九上·大石桥期末) 如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.

    1. (1) 判断DF与是⊙O的位置关系,并证明你的结论。
    2. (2) 若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
  • 24. (2018九上·大石桥期末) 为了落实国务院的指示精神,政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-x+60.设这种产品每天的销售利润为w元.
    1. (1) 求w与x之间的函数关系式.
    2. (2) 该产品销售价定为每千克多少元时,每天的销售的最大利润是多少元?
    3. (3) 如果物价部门规定这种产品的销售价不能高于每千克35元,该农户想要每天获得300元的销售利润,销售价应定为每千克多少元?
  • 25. (2018九上·大石桥期末) 已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.

    当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE= OC;

    当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.

  • 26. (2018九上·大石桥期末) 如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.

    1. (1) 求二次函数y=ax2+bx+c的表达式;
    2. (2) 过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
    3. (3) 若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.

微信扫码预览、分享更方便

试卷信息