当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省深圳市南山区2018届数学中考一模试卷

更新时间:2018-06-15 浏览次数:797 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2018·南山模拟) 2﹣4+ +(3.14﹣x)0×cos60°.
  • 18. (2018·南山模拟) 先化简,再求值: ÷( +1﹣x),其中x=2.
  • 19. (2018·南山模拟) “共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:

    1. (1) 求出本次参与调查的市民人数;
    2. (2) 将上面的条形图补充完整;
    3. (3) 若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩拜单车出行?
  • 20. (2020九上·怀集期中) 随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.
    1. (1) 设定价减少x元,预订量为y台,写出y与x的函数关系式;
    2. (2) 若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;
    3. (3) 若手机加工厂每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?
  • 21. (2018·南山模拟) 如图.在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D、E,BC的延长线与⊙O的切线AF交于点F.

    1. (1) 求证:∠ABC=2∠CAF;
    2. (2) 已知AC=2 ,EB=4CE,求⊙O的直径.
  • 22. (2022八下·南京月考) 如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.

    1. (1) 求证:△AEF是等腰直角三角形;
    2. (2) 如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF= AE;
    3. (3) 如图3,

      将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2 ,CE=2,求线段AE的长.

  • 23. (2018·南山模拟) 如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.

    1. (1) 求这个二次函数的表达式;
    2. (2) 点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;
    3. (3) 如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中, 为常数,试确定k的值.

微信扫码预览、分享更方便

试卷信息