无
*注意事项:
一个几何体的三视图如图所示,则该几何体的表面积为( )
某工作的三视图如图所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为( )(材料利用率=新工件的体积/原工件的体积)
如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为
如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为( )
正方体的棱长为1,线段上有两个动点 , 且 , 则下列结论中错误的是( )
下列四个正方体图形中,为正方体的两个顶点,分别为其所在棱的中点,能得出平面的图形的序号是( )
如图,在正方体中,下列结论不正确的是 ( )
PA垂直于正方形ABCD所在平面,连接PB,PC,PD,AC,BD,则下列垂直关系正确的是( )
①面PAB⊥面PBC
②面PAB⊥面PAD
③面PAB⊥面PCD
④面PAB⊥面PAC.
一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积V=
如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,则EF和AB所成的角为
①三点确定一个平面;
②在空间中,过直线外一点只能作一条直线与该直线平行;
③若平面α上有不共线的三点到平面β的距离相等,则α∥β;
④若直线a、b、c满足a⊥b、a⊥c,则b∥c.
其中正确命题的个数是.
如图,在直四棱柱A1B1C1D1﹣ABCD中,当底面四边形ABCD满足条件 时,有A1C⊥B1D1 . (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)
如图,三棱台-中,分别为 , 的中点.
如图,圆锥的顶点为P,底面的一条直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点. 已知PO=2,OA=1,求三棱锥P-AOC的体积,并求异面直线PA与OE所成角的大小.
在如图所示的几何体中,AE⊥平面ABC,CD∥AE,F是BE的中点,AC=BC=1,∠ACB=90°,AE=2CD=2.
证明DF⊥平面ABE;
平面图形ABB1A1C1C如图1所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.
(Ⅰ)证明:AA1⊥BC;
(Ⅱ)求AA1的长;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.
微信扫码预览、分享更方便
详情