当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2012年高考理数真题试卷(福建卷)

更新时间:2016-10-21 浏览次数:462 类型:高考真卷
一、选择题:在每小题给出分四个选项中,只有一项是符合题目要求的.
二、填空题:把答案填在答题卡的相应位置.
三、解答题,解答题写出文字说明,证明过程或演算步骤.
  • 16. (2012·福建) 受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计数据如下:

    品牌

             甲

          乙

    首次出现故障时间x(年)

    0<x<1

    1<x≤2

    x>2

    0<x≤2

    x>2

    轿车数量(辆)

    2

    3

    45

    5

    45

    每辆利润(万元)

    1

    2

    3

    1.8

    2.9

    将频率视为概率,解答下列问题:

    (Ⅰ)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;

    (Ⅱ)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1 , 生产一辆乙品牌轿车的利润为X2 , 分别求X1 , X2的分布列;

    (Ⅲ)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.

  • 17. (2012·福建) 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.

    1)sin213°+cos217°﹣sin13°cos17°

    2)sin215°+cos215°﹣sin15°cos15°

    3)sin218°+cos212°﹣sin18°cos12°

    4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°

    5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°

    (Ⅰ)试从上述五个式子中选择一个,求出这个常数;

    (Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

  • 18. (2012·福建)

    如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.

    (Ⅰ)求证:B1E⊥AD1

    (Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.

    (Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.

  • 19. (2012·福建) 如图,椭圆E: 的左焦点为F1 , 右焦点为F2 , 离心率e= .过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.

    (Ⅰ)求椭圆E的方程.

    (Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

  • 20. (2012·福建) 已知函数f(x)=ex+ax2﹣ex,a∈R.

    (Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;

    (Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.

四、选考题
  • 21. (2012·福建) (1)选修4﹣2:矩阵与变换

    设曲线2x2+2xy+y2=1在矩阵A= (a>0)对应的变换作用下得到的曲线为x2+y2=1.

    (Ⅰ)求实数a,b的值.

    (Ⅱ)求A2的逆矩阵.

  • 22. (2012·福建) 选修4﹣4:坐标系与参数方程

    在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),( ),圆C的参数方程 (θ为参数).

    (Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;

    (Ⅱ)判断直线l与圆C的位置关系.

  • 23. (2012·福建) 已知函数f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集为[﹣1,1].

    (Ⅰ)求m的值;

    (Ⅱ)若a,b,c∈R,且 =m,求证:a+2b+3c≥9.

微信扫码预览、分享更方便

试卷信息