当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省江阴市长泾片2019届九年级上学期数学期中考试试卷

更新时间:2019-02-26 浏览次数:368 类型:期中考试
一、单选题
二、填空题
三、解答题
    1. (1) x2﹣4x+1=0(用配方法);
    2. (2) 3x(x-1)=2-2x
    3. (3)
    4. (4) x2﹣3x=2
  • 20. (2018九上·江阴期中) 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

    1. (1) △ABC向下平移4个单位长度得到的△A1B1C1 , 点C1的坐标是
    2. (2) 以点B为位似中心,在网格内画出△A2B2C2 , 使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(画出图形)
    3. (3) △A2B2C2的面积是平方单位.
  • 21. (2018九上·江阴期中) 已知关于x的一元二次方程x2+(2m-1)x+m2=0有两个实数根x1、x2 , 并且满足x12+x22=1,求m的值.
    1. (1) 如图①,用尺规作图作出圆的一条直径EF(不写作法,保留作图痕迹);
    2. (2) 如图②,A、B、C、D为圆上四点,AB∥CD,AB<CD,请只用无刻度的直尺,画出圆的一条直径EF(不写画法,保留画图痕迹).
  • 23. (2024九上·黄埔期末) 如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.

    1. (1) 求证:AC是⊙O的切线;
    2. (2) 若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π).
  • 24. (2018九上·江阴期中) 在“文化南长•全民阅读”活动中,某中学社团“清风读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查.2016年全校有1000名学生,2017年全校学生人数比2016年增加10%,2018年全校学生人数比2017年增加100人.
    1. (1) 2018年全校学生有人;
    2. (2) 2017年全校学生人均阅读量比2016年多1本,阅读总量比2016年增加1700本.

      (注:阅读总量=人均阅读量×人数)

      ①求2016年全校学生人均阅读量;

      ②2016年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2017年、2018年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2018年全校学生人均阅读量比2016年增加的百分数也是a,那么2018年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.

  • 25. (2018九上·江阴期中) 我们新定义一种三角形:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.

    1. (1) 根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题?
    2. (2) 在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
    3. (3) 如图,AB是⊙O的直径,点C是⊙O上一点(不与点A,B重合),D是半圆 的中点,C,D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.

      求证:△ACE是奇异三角形.

  • 26. (2018九上·江阴期中) 阅读下面材料:

    小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求 的值.

    1. (1) 小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答: 的值为
    2. (2) 参考小昊思考问题的方法,解决问题:

      如图 3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .

      ①求 的值;

      ②若CD=2,则BP=

  • 27. (2019九上·宜兴期中) 将一块含有45°的三角板ABC的顶点A放在⊙O上,且AC与⊙O相切于点A(如图1),将△ABC从点A开始,绕着点A顺时针旋转,设旋转角为α(0°<α<135°),旋转后,AC、AB分别与⊙O交于点E,F,连接EF(如图2).已知AC=8,⊙O的半径为4.

    1. (1) 在旋转过程中,有以下几个量:①弦EF的长;② 的长;③∠AFE的度数;④点O到EF的距离.其中不变的量是(填序号);
    2. (2) 当α=°时,BC与⊙O相切(直接写出答案);
    3. (3) 当BC与⊙O相切时,求△AEF的面积.
  • 28. (2018九上·江阴期中) 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC﹣CB﹣BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒 个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.

    1. (1) 当t=5秒时,点P走过的路径长为;当t=秒时,点P与点E重合;
    2. (2) 当点P在AC边上运动时,连结PE,并过点E作AB的垂线,垂足为H.若以C、P、E为顶点的三角形与△EFH相似,试求线段EH的值;
    3. (3) 当点P在折线AC﹣CB﹣BA上运动时,作点P关于直线EF的对称点Q.在运动过程中,若形成的四边形PEQF为菱形,求t的值.

微信扫码预览、分享更方便

试卷信息