当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省洛阳市洛宁县2018届九年级上学期数学期末考试试卷

更新时间:2024-07-13 浏览次数:276 类型:期末考试
一、单选题
二、填空题
三、解答
  • 32. (2018九上·洛宁期末) 如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).

  • 33. (2018九上·孟津期末) 已知关于x方程2x2﹣(3+4k)x+2k2+k=0,k为何值时,方程有两个不相等的实数根?
  • 34. (2021九上·瓦房店月考) 如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四角连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的 ,若道路与观赏亭的面积之和是矩形水池面积的 ,求道路的宽.

  • 35. (2018九上·孟津期末) 甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传三次.

    1. (1) 求三次传球后,球回到甲脚下的概率;

    2. (2) 三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?

  • 36. (2018九上·洛宁期末) 如图,已知AB∥CD,AD、BC相交于点E,点F在ED上,且∠CBF=∠D.

    1. (1) 求证:FB2=FE•FA;
    2. (2) 若BF=3,EF=2,求△ABE与△BEF的面积之比.
  • 37. (2018九上·洛宁期末) 已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:

    1. (1) 当t为何值时,PQ∥AB?
    2. (2) 当t=3时,求△QMC的面积;
    3. (3) 是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由
    1. (1) 计算:2sin30°+4cos30°•tan60°﹣cos245°;
    2. (2) 抛物线y=ax2+bx+c经过点(0,0),(6,0),且抛物线最高点的纵坐标为3,求这条抛物线的解析式.
  • 39. (2021·安乡模拟)

    某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000米的高空C处,测得A处渔政船的俯角为60°,测得B处发生险情渔船的俯角为30°,请问:此时渔政船和渔船相距多远?(结果保留根号)

  • 40. (2018九上·洛宁期末) 第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3, , 2 (每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.
    1. (1) 请你直接写出按照爸爸的规则小明能看比赛的概率;
    2. (2) 小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.
  • 41. (2018九上·洛宁期末) 为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.

    调查结果统计表

    组别

    分组 单位:元

    人数

    A

    4

    B

    16

    C

    a

    D

    b

    E

    2

    请根据以上图表,解答下列问题:

    1. (1) 填空:这次被调查的同学共有人,
    2. (2) 求扇形统计图中扇形C的圆心角度数;
    3. (3) 该校共有学生1000人,请估计每月零花钱的数额x在 范围的人数.
  • 42. (2018九上·洛宁期末) 在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.
    1. (1) 随机从袋中取出一个球,求取出的球是黑球的概率;
    2. (2) 若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?
    3. (3) 若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)
  • 43. (2018九上·洛宁期末)

    如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

  • 44. (2018九上·洛宁期末) “天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足 ,设销售这种台灯每天的利润为y(元).
    1. (1) 求y与x之间的函数关系式;
    2. (2) 当销售单价定为多少元时,每天的利润最大?最大利润是多少?
    3. (3) 在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润,应该将销售单价定为多少元?
  • 45. (2018九上·洛宁期末) 如图,二次函数 (a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).

    1. (1) 求二次函数的解析式和直线BD的解析式;
    2. (2) 点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;
    3. (3) 在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为 ?若存在求出点Q的坐标;若不存在请说明理由.

微信扫码预览、分享更方便

试卷信息