当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市苍南县2018届数学中考一模试卷

更新时间:2024-07-13 浏览次数:562 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2018·苍南模拟) 计算:(﹣2)0﹣( 2+|﹣1|.
  • 18. (2018·苍南模拟) 如图,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.

    1. (1) 求证:△ABE≌△CDB.
    2. (2) 连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.
  • 19. (2018·苍南模拟) 如图,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位,CD,EF间的距离是3个单位,格点O在CD上(网格线的交点叫格点).请分别在图①、②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.

  • 20. (2018·苍南模拟) 随着道路交通的不断完善,某市旅游业快速发展,该市旅游景区有A、B、C、D、E等著名景点,市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:

    1. (1) 2017年“五•一”期间,该市旅游景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.
    2. (2) 在等可能性的情况下,甲、乙两个旅行团在A、B、D三个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明.
  • 21. (2019·沈丘模拟) 如图,钝角△ABC中,AB=AC,BC=2 ,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.

    1. (1) 求证:EF⊥AC.
    2. (2) 连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.
  • 22. (2018·苍南模拟) 如图,▱ABCD位于直角坐标系中,AB=2,点D(0,1),以点C为顶点的抛物线y=ax2+bx+c经过x轴正半轴上的点A,B,CE⊥x轴于点E.

    1. (1) 求点A,B,C的坐标.
    2. (2) 将该抛物线向上平移m个单位恰好经过点D,且这时新抛物线交x轴于点M,N.

      ①求MN的长.

      ②点P是新抛物线对称轴上一动点,将线段AP绕点A顺时针旋转60°得AQ,则OQ的最小值为(直接写出答案即可)

  • 23. (2018·苍南模拟) 如图,王爷爷家院子里有一块三角形田地ABC,AB=AC=5米,BC=6米,现打算把它开垦出一个矩形MNFE区域种植韭菜,△AMN区域种植芹菜,△CME和△BNF区域种植青菜(开垦土地面积损耗均忽略不计),其中点M,N分别在AC,AB上,点E,F在BC上,已知韭菜每平方米收益100元,芹菜每平方米收益60元,青菜每平方米收益40元,设CM=5x米,王爷爷的蔬菜总收益为W元.

    1. (1) 当矩形MNFE恰好为正方形时,求韭菜种植区域矩形MNFE的面积.
    2. (2) 若种植韭菜的收益等于另两种蔬菜收益之和的2倍,求这时x的值.
    3. (3) 求王爷爷的蔬菜总收益为W关于x的函数表达式及W的最大值.
  • 24. (2018·苍南模拟) 如图,矩形ABCD中,AD=10,CD=15,E是边CD上一点,且DE=5,P是射线AD上一动点,过A,P,E三点的⊙O交直线AB于点F,连结PE,EF,PF,设AP=m.

    1. (1) 当m=6时,求AF的长.
    2. (2) 在点P的整个运动过程中.

      ①tan∠PFE的值是否改变?若不变,求出它的值;若改变,求出它的变化范围.

      ②当矩形ABCD恰好有2个顶点落在⊙O上时,求m的值.

    3. (3) 若点A,H关于点O成中心对称,连结EH,CH.当△CEH是等腰三角形时,求出所有符合条件的m的值.(直接写出答案即可)

微信扫码预览、分享更方便

试卷信息